scholarly journals Surface Friction and Boundary Layer Thickening in Transitional Flow

Author(s):  
Ping Lu ◽  
Manoj Thapa ◽  
Chaoqun Liu
2017 ◽  
Vol 74 (8) ◽  
pp. 2575-2591 ◽  
Author(s):  
Junyao Heng ◽  
Yuqing Wang ◽  
Weican Zhou

Abstract The balanced and unbalanced aspects of tropical cyclone (TC) intensification are revisited with the balanced contribution diagnosed with the outputs from a full-physics model simulation of a TC using the Sawyer–Eliassen (SE) equation. The results show that the balanced dynamics can well capture the secondary circulation in the full-physics model simulation even in the inner-core region in the boundary layer. The balanced dynamics can largely explain the intensification of the simulated TC. The unbalanced dynamics mainly acts to prevent the boundary layer agradient flow in the inner-core region from further intensification. Although surface friction can enhance the boundary layer inflow and make the inflow penetrate more inward into the eye region, contributing to the eyewall contraction, the net dynamical effect of surface friction on TC intensification is negative. The sensitivity of the balanced solution to the procedure used to ensure the ellipticity condition for the SE equation is also examined. The results show that the boundary layer inflow in the balanced response is very sensitive to the adjustment to inertial stability in the upper troposphere and the calculation of radial wind at the surface with relatively coarse vertical resolution in the balanced solution. Both the use of the so-called global regularization and the one-sided finite-differencing scheme used to calculate the surface radial wind in the balanced solution as utilized in some previous studies can significantly underestimate the boundary layer inflow. This explains why the boundary layer inflow in the balanced response is too weak in some previous studies.


Author(s):  
Syed Anjum Haider Rizvi ◽  
Joseph Mathew

At off-design conditions, when the blade Reynolds number is low, a significant part of the blade boundary layer can be transitional. Then, standard RANS models are unable to predict the flows correctly but explicit transition modeling provides some improvement. Since large eddy simulations (LES) are improvements on RANS, the performance of LES was examined by simulating a flow through a linear, compressor cascade for which experimental data are available — specifically at the Reynolds number of 210,000 based on blade chord when transition processes occur over a significant extent of the suction surface. The LES were performed with an explicit filtering approach, applying a low-pass filter to achieve sub-grid-scale modeling. Explicit 8th-order difference formulas were used to obtain high resolution spatial derivative terms. An O-grid was wrapped around the blade with suitable clustering for the boundary layer and regions of large changes along the blade. Turbulent in-flow was provided from a precursor simulation of homogeneous, isotropic turbulence. Two LES and a DNS were performed. The second LES refines the grid in the vicinity of the separation bubble on the suction surface, and along the span. Surface pressure distributions from all simulations agree closely with experiment, thus providing a much better prediction than even transition-sensitive RANS computations. Wall normal profiles of axial velocity and fluctuations also agree closely with experiment. Differences between LES and DNS are small, but the refined grid LES is closer to the DNS almost everywhere. This monotonic convergence, expected of the LES method used, demonstrates its reliability. The pressure surface undergoes transition almost immediately downstream of the leading edge. On the suction surface there are streaks as expected for freestream-turbulence-induced transition, but spots do not appear. Instead, a separating shear layer rolls up and breaks down to turbulence at re-attachment. Both LES capture this process. Skin friction distribution reveals the transition near the re-attachment to occur over an extended region, and subsequent relaxation is slower in the LES. The narrower transition zone in the DNS is indicative of the essential role of smaller scales during transition that should not be neglected in LES. Simulation data also reveal that an assumption of laminar kinetic energy transition models that Reynolds shear stress remains small in the pre-transitional region is supported. The remaining differences in the predictions of such models is thus likely to be the separation-induced transition which preempts the spot formation.


Author(s):  
Ralph J. Volino ◽  
Terrence W. Simon

A technique called “octant analysis” was used to examine the eddy structure of turbulent and transitional heated boundary layers on flat and curved surfaces. The intent was to identify important physical processes that play a role in boundary layer transition on flat and concave surfaces. Octant processing involves the partitioning of flow signals into octants based on the instantaneous signs of the fluctuating temperature, t′; streamwise velocity, u′; and cross-stream velocity, v′. Each octant is associated with a particular eddy motion. For example, u′<0, v′>0, t′>0 is associated with an ejection or “burst” of warm fluid away from a heated wall. Within each octant, the contribution to various quantities of interest (such as the turbulent shear stress, −u′v′, or the turbulent heat flux, v′t′) can be computed. By comparing and contrasting the relative contributions from each octant, the importance of particular types of motion can be determined. If the data within each octant is further segregated based on the magnitudes of the fluctuating components so that minor events are eliminated, the relative importance of particular types of motion to the events that are important can also be discussed. In fully-developed, turbulent boundary layers along flat plates, trends previously reported in the literature were confirmed. A fundamental difference was observed in the octant distribution between the transitional and fully-turbulent boundary layers, however, showing incomplete mixing and a lesser importance of small scales in the transitional boundary layer. Such observations were true on both flat and concave walls. The differences are attributed to incomplete development of the turbulent kinetic energy cascade in transitional flows. The findings have potential application to modelling, suggesting the utility of incorporating multiple length scales in transition models.


Author(s):  
Michael P. Schultz ◽  
Ralph J. Volino

An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) free-stream turbulence, strong acceleration K=ν/Uw2dUw/dxas high as9×10-6, and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and non-turbulent zones of the transitional flow.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
D. Keith Walters ◽  
Davor Cokljat

An eddy-viscosity turbulence model employing three additional transport equations is presented and applied to a number of transitional flow test cases. The model is based on the k-ω framework and represents a substantial refinement to a transition-sensitive model that has been previously documented in the open literature. The third transport equation is included to predict the magnitude of low-frequency velocity fluctuations in the pretransitional boundary layer that have been identified as the precursors to transition. The closure of model terms is based on a phenomenological (i.e., physics-based) rather than a purely empirical approach and the rationale for the forms of these terms is discussed. The model has been implemented into a commercial computational fluid dynamics code and applied to a number of relevant test cases, including flat plate boundary layers with and without applied pressure gradients, as well as a variety of airfoil test cases with different geometries, Reynolds numbers, freestream turbulence conditions, and angles of attack. The test cases demonstrate the ability of the model to successfully reproduce transitional flow behavior with a reasonable degree of accuracy, particularly in comparison with commonly used models that exhibit no capability of predicting laminar-to-turbulent boundary layer development. While it is impossible to resolve all of the complex features of transitional and turbulent flows with a relatively simple Reynolds-averaged modeling approach, the results shown here demonstrate that the new model can provide a useful and practical tool for engineers addressing the simulation and prediction of transitional flow behavior in fluid systems.


2006 ◽  
Author(s):  
J. M. Jones ◽  
D. K. Walters

This paper presents the initial development and validation of a modified two-equation eddy-viscosity turbulence model for computational fluid dynamics (CFD) prediction of transitional and turbulent flow. The new model is based on a k-ω model framework, making it more easily implemented into existing general-purpose CFD solvers than other recently proposed model forms. The model incorporates inviscid and viscous damping functions for the eddy viscosity, as well as a production damping term, in order to reproduce the appropriate effects of laminar, transitional, and turbulent boundary layer flow. It has been implemented into a commercially available flow solver (FLUENT) and evaluated for simple attached and separated flow conditions, including 2-D flow over a flat plate and a circular cylinder. The results presented show that the new model is able to yield reasonable predictions of transitional flow behavior using a very simple modeling framework, including an appropriate response to freestream turbulence and boundary layer separation.


2019 ◽  
Vol 104 (2-3) ◽  
pp. 533-552
Author(s):  
J. Casacuberta ◽  
K. J. Groot ◽  
Q. Ye ◽  
S. Hickel

AbstractMicro-ramps are popular passive flow control devices which can delay flow separation by re-energising the lower portion of the boundary layer. We compute the laminar base flow, the instantaneous transitional flow, and the mean flow around a micro-ramp immersed in a quasi-incompressible boundary layer at supercritical roughness Reynolds number. Results of our Direct Numerical Simulations (DNS) are compared with results of BiLocal stability analysis on the DNS base flow and independent tomographic Particle Image Velocimetry (tomo-PIV) experiments. We analyse relevant flow structures developing in the micro-ramp wake and assess their role in the micro-ramp functionality, i.e., in increasing the near-wall momentum. The main flow feature of the base flow is a pair of streamwise counter-rotating vortices induced by the micro-ramp, the so-called primary vortex pair. In the instantaneous transitional flow, the primary vortex pair breaks up into large-scale hairpin vortices, which arise due to linear varicose instability of the base flow, and unsteady secondary vortices develop. Instantaneous vortical structures obtained by DNS and experiments are in good agreement. Matching linear disturbance growth rates from DNS and linear stability analysis are obtained until eight micro-ramp heights downstream of the micro-ramp. For the setup considered in this article, we show that the working principle of the micro-ramp is different from that of classical vortex generators; we find that transitional perturbations are more efficient in increasing the near-wall momentum in the mean flow than the laminar primary vortices in the base flow.


Sign in / Sign up

Export Citation Format

Share Document