scholarly journals The Role of Cortical Feedback Circuitry on Functional Maps of V2 in Primates: Effects on Orientation Tuning and Direction Selectivity

Author(s):  
Ana Karla ◽  
Cecilia Ceriatte ◽  
Bruss Lima ◽  
Juliana Soares ◽  
Mario Fiorani ◽  
...  
1995 ◽  
Vol 27 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. A. Shevelev ◽  
U. T. Eysel ◽  
N. A. Lazareva ◽  
G. A. Sharaev

2015 ◽  
Vol 114 (5) ◽  
pp. 2893-2902 ◽  
Author(s):  
Vanessa Hollmann ◽  
Valerie Lucks ◽  
Rafael Kurtz ◽  
Jacob Engelmann

In the developing brain, training-induced emergence of direction selectivity and plasticity of orientation tuning appear to be widespread phenomena. These are found in the visual pathway across different classes of vertebrates. Moreover, short-term plasticity of orientation tuning in the adult brain has been demonstrated in several species of mammals. However, it is unclear whether neuronal orientation and direction selectivity in nonmammalian species remains modifiable through short-term plasticity in the fully developed brain. To address this question, we analyzed motion tuning of neurons in the optic tectum of adult zebrafish by calcium imaging. In total, orientation and direction selectivity was enhanced by adaptation, responses of previously orientation-selective neurons were sharpened, and even adaptation-induced emergence of selectivity in previously nonselective neurons was observed in some cases. The different observed effects are mainly based on the relative distance between the previously preferred and the adaptation direction. In those neurons in which a shift of the preferred orientation or direction was induced by adaptation, repulsive shifts (i.e., away from the adapter) were more prevalent than attractive shifts. A further novel finding for visually induced adaptation that emerged from our study was that repulsive and attractive shifts can occur within one brain area, even with uniform stimuli. The type of shift being induced also depends on the difference between the adapting and the initially preferred stimulus direction. Our data indicate that, even within the fully developed optic tectum, short-term plasticity might have an important role in adjusting neuronal tuning functions to current stimulus conditions.


1999 ◽  
Vol 82 (5) ◽  
pp. 2667-2675 ◽  
Author(s):  
Susana Martinez-Conde ◽  
Javier Cudeiro ◽  
Kenneth L. Grieve ◽  
Rosa Rodriguez ◽  
Casto Rivadulla ◽  
...  

In the absence of a direct geniculate input, area 17 cells in the cat are nevertheless able to respond to visual stimuli because of feedback connections from area 18. Anatomic studies have shown that, in the cat visual cortex, layer 5 of area 18 projects to layer 5 of area 17, and layers 2/3 of area 18 project to layers 2/3 of area 17. What is the specific role of these connections? Previous studies have examined the effect of area 18 layer 5 blockade on cells in area 17 layer 5. Here we examine whether the feedback connections from layers 2/3 of area 18 influence the orientation tuning and velocity tuning of cells in layers 2/3 of area 17. Experiments were carried out in anesthetized and paralyzed cats. We blocked reversibly a small region (300 μm radius) in layers 2/3 of area 18 by iontophoretic application of GABA and recorded simultaneously from cells in layers 2/3 of area 17 while stimulating with oriented sweeping bars. Area 17 cells showed either enhanced or suppressed visual responses to sweeping bars of various orientations and velocities during area 18 blockade. For most area 17 cells, orientation bandwidths remained unaltered, and we never observed visual responses during blockade that were absent completely in the preblockade condition. This suggests that area 18 layers 2/3 modulate visual responses in area 17 layers 2/3 without fundamentally altering their specificity.


2019 ◽  
Author(s):  
Marie Tolkiehn ◽  
Simon R. Schultz

AbstractOrientation tuning in mouse primary visual cortex (V1) has long been reported to have a random or “salt-and-pepper” organisation, lacking the structure found in cats and primates. Laminar in-vivo multi-electrode array recordings here reveal previously elusive structure in the representation of visual patterns in the mouse visual cortex, with temporo-nasally drifting gratings eliciting consistently highest neuronal responses across cortical layers and columns, whilst upward moving gratings reliably evoked the lowest activities. We suggest this bias in direction selectivity to be behaviourally relevant as objects moving into the visual field from the side or behind may pose a predatory threat to the mouse whereas upward moving objects do not. We found furthermore that direction preference and selectivity was affected by stimulus spatial frequency, and that spatial and directional tuning curves showed high signal correlations decreasing with distance between recording sites. In addition, we show that despite this bias in direction selectivity, it is possible to decode stimulus identity and that spatiotemporal features achieve higher accuracy in the decoding task whereas spike count or population counts are sufficient to decode spatial frequencies implying different encoding strategies.Significance statementWe show that temporo-nasally drifting gratings (i.e. opposite the normal visual flow during forward movement) reliably elicit the highest neural activity in mouse primary visual cortex, whereas upward moving gratings reliably evoke the lowest responses. This encoding may be highly behaviourally relevant, as objects approaching from the periphery may pose a threat (e.g. predators), whereas upward moving objects do not. This is a result at odds with the belief that mouse primary visual cortex is randomly organised. Further to this biased representation, we show that direction tuning depends on the underlying spatial frequency and that tuning preference is spatially correlated both across layers and columns and decreases with cortical distance, providing evidence for structural organisation in mouse primary visual cortex.


1993 ◽  
Vol 10 (1) ◽  
pp. 93-115 ◽  
Author(s):  
B. Dreher ◽  
A. Michalski ◽  
R. H. T. Ho ◽  
C. W. F. Lee ◽  
W. Burke

AbstractExtracellular recordings from single neurons have been made from presumed area 21a of the cerebral cortex of the cat, anesthetized with N2O/O2/sodium pentobarbitone mixture. Area 21a contains mainly a representation of a central horizontal strip of contralateral visual field about 5 deg above and below the horizontal meridian.Excitatory discharge fields of area 21a neurons were substantially (or slightly but significantly) larger than those of neurons at corresponding eccentricities in areas 17, 19, or 18, respectively. About 95% of area 21a neurons could be activated through either eye and the input from the ipsilateral eye was commonly dominant. Over 90% and less than 10% of neurons had, respectively, C-type and S-type receptive-field organization. Virtually all neurons were orientation-selective and the mean width at half-height of the orientation tuning curves at 52.9 deg was not significantly different from that of neurons in areas 17 and 18. About 30% of area 21a neurons had preferred orientations within 15 deg of the vertical.The mean direction-selectivity index (32.8%) of area 21a neurons was substantially lower than the indices for neurons in areas 17 or 18. Only a few neurons exhibited moderately strong end-zone inhibition. Area 21a neurons responded poorly to fast-moving stimuli and the mean preferred velocity at about 12.5 deg/s was not significantly different from that for area 17 neurons.Selective pressure block of Y fibers in contralateral optic nerve resulted in a small but significant reduction in the preferred velocities of neurons activated via the Y-blocked eye. By contrast, removal of the Y input did not produce significant changes in the spatial organization of receptive fields (S or C type), the size of the discharge fields, the width of orientation tuning curves, or direction-selectivity indices.Our results are consistent with the idea that area 21a receives its principal excitatory input from area 17 and is involved mainly in form rather than motion analysis.


1975 ◽  
Vol 38 (6) ◽  
pp. 1524-1540 ◽  
Author(s):  
A. W. Goodwin ◽  
G. H. Henry

Following our earlier study on direction selectivity in simple cells (5), the present findings on complex cells made it possible to compare the direction selectivity in the two types of striate cell. Common properties were found in the dimension of the smallest stimulus displacement giving a direction-selective response and in the role of inhibition in suppressing the response as the stimulus moved in the nonpreferred direction. However, the effectiveness of this inhibition varied in the two cell types since it suppressed both driven and spontaneous activity in the simple cell, but only driven firing in the complex cell. It is argued that direction selectivity must enter the response before the complex cell if the inhibition responsible for it's generation fails to influence the spontaneous activity of the cell. The consequences of this finding are considered in the terms of parallel or sequential processing of visual information in striate cortex.


Sign in / Sign up

Export Citation Format

Share Document