scholarly journals Excellency of Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering

Biomaterials ◽  
2020 ◽  
Author(s):  
Mohammad Shariful Islam ◽  
Mohammad Abdulla-Al-Mamun ◽  
Alam Khan ◽  
Mitsugu Todo

The hydroxyapatite [HAp, Ca10(PO4)6(OH)2] has a variety of applications in bone fillers and replacements due to its excellent bioactivity and osteoconductivity. It comprises the main inorganic component of hard tissues. Among the various approaches, a composite approach using several components like biopolymer, gelatin, collagen, and chitosan in the functionalization of scaffolds with HAp has the prospective to be an engineered biomaterial for bone tissue engineering. HAp composite scaffolds have been developed to obtain a material with different functionalities such as surface reactivity, bioactivity, mechanical strength, and capability of drug or growth factor delivery. Several techniques and processes for the synthesis and fabrication of biocompatible HAp composite scaffolds suitable for bone regeneration are addressed here. Further, this chapter described the excellences of various HAp composite scaffolds used in in vitro and in vivo experiments in bone tissue engineering.

2016 ◽  
Vol 23 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Sima Shahabi ◽  
Yashar Rezaei ◽  
Fathollah Moztarzadeh ◽  
Farhood Najafi

AbstractWe developed degradable poly(propylene fumarate)/bioactive glass (PPF/BG) composite scaffolds based on a sintered microsphere technique and investigated the effects of BG content on the characteristics of these composite scaffolds. Immersion in a simulated body fluid (SBF) was used to evaluate the surface reactivity of composite scaffolds. The surface of composite scaffolds was covered with hydroxycarbonate apatite layer after 7 days of immersion. Ion concentration analyses revealed a decrease in P concentration and an increase in Si, Ca, and Sr concentrations in SBF immersed with composite scaffolds during the 3-week period. The Ca and P uptake rates decreased after 4 days of incubation. This coincided with the decrease of the Si release rate. These data lend support to the suggestion that the Si released from the BG content of scaffolds present in the polymer matrix was involved in the formation of the Ca-P layer. The evaluation of the in vitro degradation of composite microspheres revealed that the weight of scaffolds remained relatively constant during the first 3 weeks and then started to decrease slowly, losing 10.5% of their initial mass by week 12. Our results support the concept that these new bioactive, degradable composite scaffolds may be used for bone tissue engineering applications.


2007 ◽  
Vol 342-343 ◽  
pp. 369-372 ◽  
Author(s):  
S.J. Heo ◽  
S.E. Kim ◽  
Yong Taek Hyun ◽  
D.H. Kim ◽  
Hyang Mi Lee ◽  
...  

This study evaluated the potential of the PCL (poly -caprolactone)/HA(Hydroxyapatite) composite materials as a scaffold for bone regeneration. For this, we fabricated scaffolds utilizing salt leaching method. The PCL/HA composite scaffolds were prepared with various HA contents (20wt%, 40wt%, 60 wt %). To ensure the potential for the scaffolds, porosity tests were conducted along with SEM observations. The porosity decreased with the increase of the contents of HA particles. The porosity of the composite with the highest contents of HA was still adoptable (~85%). In addition, the PCL/HA composite scaffolds were evaluated for their ability of osteogenic differentiation with human bone marrow stromal cell (hBMSC) in vitro. Alkaline phosphatase (ALP) activity, markers for osteoblastic differentiation, and total protein contents were evaluated in hBMSCs following 14 days of cultivation. The addition of HA particles enhanced proliferation of hBMSC during the test. Also, the differentiation ability of the cells was increased as HA particles were added. In this study, we concluded that PCL/HA composite scaffolds has great potential as a scaffold for bone tissue engineering.


2016 ◽  
Vol 66 (3) ◽  
pp. 373-385 ◽  
Author(s):  
Suphannee Thanyaphoo ◽  
Jasadee Kaewsrichan

Abstract Silicon-substituted calcium phosphate (Si-CaP) was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP) cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2) was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2016 ◽  
Vol 4 (10) ◽  
pp. 1827-1841 ◽  
Author(s):  
Han-Tsung Liao ◽  
K. T. Shalumon ◽  
Kun-Hung Chang ◽  
Chialin Sheu ◽  
Jyh-Ping Chen

Gelatin cryogels modified with nHAP and BMP-2 could provide cues to promote the osteogenesis of ADSCs in vitro and in vivo.


2022 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Giorgia Borciani ◽  
Giorgia Montalbano ◽  
Nicola Baldini ◽  
Chiara Vitale-Brovarone ◽  
Gabriela Ciapetti

New biomaterials and scaffolds for bone tissue engineering (BTE) applications require to be tested in a bone microenvironment reliable model. On this assumption, the in vitro laboratory protocols with bone cells represent worthy experimental systems improving our knowledge about bone homeostasis, reducing the costs of experimentation. To this day, several models of the bone microenvironment are reported in the literature, but few delineate a protocol for testing new biomaterials using bone cells. Herein we propose a clear protocol to set up an indirect co-culture system of human-derived osteoblasts and osteoclast precursors, providing well-defined criteria such as the cell seeding density, cell:cell ratio, the culture medium, and the proofs of differentiation. The material to be tested may be easily introduced in the system and the cell response analyzed. The physical separation of osteoblasts and osteoclasts allows distinguishing the effects of the material onto the two cell types and to evaluate the correlation between material and cell behavior, cell morphology, and adhesion. The whole protocol requires about 4 to 6 weeks with an intermediate level of expertise. The system is an in vitro model of the bone remodeling system useful in testing innovative materials for bone regeneration, and potentially exploitable in different application fields. The use of human primary cells represents a close replica of the bone cell cooperation in vivo and may be employed as a feasible system to test materials and scaffolds for bone substitution and regeneration.


Sign in / Sign up

Export Citation Format

Share Document