scholarly journals Recent Developments of Combined Heat Pump and Organic Rankine Cycle Energy Systems for Buildings

2020 ◽  
Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Pouyan Talebizadeh Sardari ◽  
Michela Longo

To develop efficient and lower emission heating and cooling systems, this book chapter focuses on interests for the innovative combination of a heat pump (HP) and organic Rankine cycle (ORC) for building applications. In this state-of-the-art survey, the potentials and advantages of combined HP-ORC systems have been investigated and discussed. Past works have examined various combinations, comprising indirectly-combined as series and parallel, directly-combined units, as well as reversible combination configurations. Following describing such arrangements, their performance is discussed. Considerations for optimising the overall architecture of these combined energy systems are pinpointed using these same sources, taking into account heat source and sink selection, expander/compressor units, selection of working fluids, control strategies, operating temperatures, thermal energy storage and managing more variable seasonal temperatures. Furthermore, experimental works present further functional problems and matters needing additional research, and assist to emphasise experimental techniques that can be utilised in this field of research. Finally, from the studies surveyed, some areas for future research were recommended.

Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Pouyan Talebizadeh Sardari ◽  
Michela Longo

Abstract The following paper aims to explore a heat pump’s (HP) as well as an organic Rankine cycle’s (ORC) novel combination for the development of both an efficient and low-emissions heating and cooling systems. This latest review examines both benefits and possibilities of a combined HP-ORC system. Previously, studies have explored several different combinations, such as directly-coupled and reversible combination units as well as parallel configurations units in addition to indirectly-coupled ones. Following defining aforementioned configurations, a discussion on their performance is carried out in detail. Considerations for the optimisation of the architecture, overall of such hybrid systems via utilising the same sources while also discussing heat source, sink selection and operating temperatures as well as thermal energy storage, expander/compressor units, control strategies in addition to working fluids’ selection and managing seasonal temperatures that are increasingly variable, have been identified. Additionally, the experimental studies that have been performed reveal increasingly practical obstacles as well as other areas that require more research while serving to shed light on experimental techniques, which can be applicable to this research’s area. Based upon research, it has been revealed that regional conditions including temperatures and annual weather as well as the cost of energy produce a colossal effect on such systems’ economic feasibility framework as well as partially dictating the overall system configuration’s selection. Additionally, the review disclosed how important the following elements are: 1) a greater temperature differential amid the source of heat and heat sink; 2) proper source of heat and sink selection; 3) working fluid selection; and 4) thermal storage for the maintenance of the difference. Comparatively, from the research works from the past, additional optimisation based on individual component level as well as through control strategies of either an advanced or predictive method, these produce a smaller effect and are worth performing an evaluation on economically due to them not being feasible for the current system. Lastly, based on investigated research, there are certain areas for which recommendation have been provided with regard to future research and this includes a technology configurations’ comparison for understanding different regions’ optimal system, a sensitivity analysis for understanding key system elements for both optimisation as well as design, both an investigation as well as testing carried out for available units and applicable systems that are presently available, and identifying novel use cases.


2018 ◽  
Vol 41 (6) ◽  
pp. 1528-1539 ◽  
Author(s):  
Jianhua Zhang ◽  
Kang Li ◽  
Jinliang Xu

Organic Rankine cycle (ORC) is one of the most rapidly growing approaches to utilizing low grade thermal energy. This paper deals with the main control problems existed in ORC systems and overviews the main approaches presented in literature. The main ORC operating modes are introduced, the control strategies of ORC systems are then surveyed. Thus, this paper presents a comprehensive review of overall control strategies for ORC energy conversion systems and points out research trend on ORC control systems.


Author(s):  
Fabrizio Reale ◽  
Vincenzo Iannotta ◽  
Raffaele Tuccillo

The primary need of reducing pollutant and greenhouse gas emissions has led to new energy scenarios. The interest of research community is mainly focused on the development of energy systems based on renewable resources and energy storage systems and smart energy grids. In the latter case small scale energy systems can become of interest as nodes of distributed energy systems. In this context micro gas turbines (MGT) can play a key role thanks to their flexibility and a strategy to increase their overall efficiency is to integrate gas turbines with a bottoming cycle. In this paper the authors analyze the possibility to integrate a MGT with a super critical CO2 Brayton cycle turbine (sCO2 GT) as a bottoming cycle (BC). A 0D thermodynamic analysis is used to highlight opportunities and critical aspects also by a comparison with another integrated energy system in which the waste heat recovery (WHR) is obtained by the adoption of an organic Rankine cycle (ORC). While ORC is widely used in case of middle and low temperature of the heat source, s-CO2 BC is a new method in this field of application. One of the aim of the analysis is to verify if this choice can be comparable with ORC for this operative range, with a medium-low value of exhaust gases and very small power values. The studied MGT is a Turbec T100P.


2019 ◽  
Vol 28 (5) ◽  
pp. 1065-1077 ◽  
Author(s):  
Tenglong Zhao ◽  
Fei Yu ◽  
Hongguang Zhang ◽  
Yuting Wu ◽  
Yan Wang

Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1352 ◽  
Author(s):  
Sebastian Staub ◽  
Peter Bazan ◽  
Konstantinos Braimakis ◽  
Dominik Müller ◽  
Christoph Regensburger ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Olivier Dumont ◽  
Carolina Carmo ◽  
Valentin Fontaine ◽  
François Randaxhe ◽  
Sylvain Quoilin ◽  
...  

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Md. Tareq Chowdhury ◽  
Esmail M. A. Mokheimer

Abstract Even though the renewable technologies are getting a gradually increasing share of the energy industry, the momentum of its growth is far away from outweighing the dominance of fossil fuel. Due to the concern for ozone depletion, global warming, and many more environmental hazards caused by fossil fuels, it is essential to substitute the conventional energy sources with renewables. Since this replacement cannot be done overnight, the conventional energy technologies should be integrated with renewables to minimize the pace of adverse effects on fossil fuel–based industries in the meantime. This way, the industries can be more efficient by utilizing waste heat, which accounts for 50% of the total energy generated now. This review paper outlines the role of solar energy in the generation of power and cooling systems that are capable of utilizing low-temperature heat sources below 400 °C. The review is primarily concentrated on line-focused concentrated solar power (CSP)-assisted solar technologies to be integrated with organic Rankine cycle (ORC) and absorption cooling systems. Photovoltaic and similar multigeneration systems are also discussed in brief.


2020 ◽  
Vol 12 (22) ◽  
pp. 9449
Author(s):  
Hossein Nami ◽  
Amjad Anvari-Moghaddam ◽  
Ahmad Arabkoohsar ◽  
Amir Reza Razmi

The combination of a waste-driven hybrid heat and power plant with a small organic Rankine cycle unit was recently proposed and investigated from a thermodynamic perspective. The present study provides a more comprehensive assessment from system operation through considering the energy, exergy, exergoeconomic, and exergoenvironmental (4E) aspects in a revised design of this concept to obtain a bigger picture of the system’s technical, economic, and environmental effects on existing and future energy systems. The revised design includes a flue gas condensation unit and alternative friendly organic working fluids. For this, the hybrid plant is modeled for its thermal, economic, and environmental performances. Then, the exergy losses and environmental effects of the system are scrutinized, the cost of losses and pollutions are predicted, and lastly, sorts of solutions are introduced to improve the exergoeconomic and exergoenvironmental performances of the system. The results indicate that the highest share of exergy destruction relates to the incineration (equipped with a steam generator) with a levelized cost of approximately USD 71/h for a power plant with almost 3.3 megawatt electricity output capacity. The hybridization proposal with the flue gas condensation unit increases the sustainability index of the system from 1.264 to 1.28.


Energy ◽  
2019 ◽  
Vol 176 ◽  
pp. 81-90 ◽  
Author(s):  
Chenghu Zhang ◽  
Jiyou Lin ◽  
Yufei Tan

Sign in / Sign up

Export Citation Format

Share Document