scholarly journals Advances in Electrical Neuroimaging, Brain Networks and Neurofeedback Protocols

Author(s):  
Robert W. Thatcher ◽  
Carl J. Biver ◽  
Ernesto Palermero Soler ◽  
Joel Lubar ◽  
J. Lucas Koberda

Human EEG biofeedback (neurofeedback) started in the 1940s using 1 EEG recording channel, then to 4 channels in the 1990s. New advancements in electrical neuroimaging expanded EEG biofeedback to 19 channels using Low Resolution Electromagnetic Tomography (LORETA) three-dimensional current sources of the EEG. In 2004–2006 the concept of a “real-time” comparison of the EEG to a healthy reference database was developed and tested using surface EEG z-score neurofeedback based on a statistical bell curve called “real-time” z-scores. The “real-time” or “live” normative reference database comparison was developed to help reduce the uncertainty of what threshold to select to activate a feedback signal and to unify all EEG measures to a single value, i.e., the distance from the mean of an age matched reference sample. In 2009 LORETA z-score neurofeedback further increased the specificity by targeting brain network hubs referred to as Brodmann areas. A symptom check list program to help link symptoms to dysregulation of brain networks based on fMRI and PET and neurology was created in 2009. The symptom checklist and NIH based networks linking symptoms to brain networks grew out of the human brain mapping program starting in 1990 which is continuing today. A goal is to increase specificity of EEG biofeedback by targeting brain network hubs and connections between hubs likely linked to the patient’s symptoms. New advancements in electrical neuroimaging introduced in 2017 provide increased resolution of three-dimensional source localization with 12,700 voxels using swLORETA with the capacity to conduct cerebellar neurofeedback and neurofeedback of subcortical brain hubs such as the thalamus, amygdala and habenula. Future applications of swLORETA z-score neurofeedback represents another example of the transfer of knowledge gained by the human brain mapping initiatives to further aid in helping people with cognition problems as well as balance problems and parkinsonism. A brief review of the past, present and future predictions of z-score neurofeedback are discussed with special emphasis on new developments that point toward a bright and enlightened future in the field of EEG biofeedback.

Biofeedback ◽  
2019 ◽  
Vol 47 (4) ◽  
pp. 89-103
Author(s):  
Robert W. Thatcher ◽  
Joel F. Lubar ◽  
J. Lucas Koberda

Human electroencephalogram (EEG) biofeedback (neurofeedback) started in the 1940s using one EEG recording channel, then four channels in the 1990s, and in 2004, expanded to 19 channels using Low Resolution Electromagnetic Tomography (LORETA) of the microampere three-dimensional current sources of the EEG. In 2004–2006 the concept of a real-time comparison of the EEG to a healthy reference database was developed and tested using surface EEG z score neurofeedback based on a statistical bell curve called real-time z scores. The real-time or live normative reference database comparison was developed to help reduce the uncertainty of what threshold to select to activate a feedback signal and to unify all EEG measures to a single value (i.e., the distance from the mean of an age-matched reference sample). In 2009 LORETA z score neurofeedback further increased specificity by targeting brain network hubs referred to as Brodmann areas. A symptom checklist program to help link symptoms to dysregulation of brain networks based on fMRI and positron emission tomography (PET) and neurology was created in 2009. The symptom checklist and National Institutes of Health–based networks linking symptoms to brain networks grew out of the human brain mapping program started in 1990 that continues today. A goal is to increase specificity of EEG biofeedback by targeting brain network hubs and connections between hubs likely linked to the patient's symptoms. Developments first introduced in 2017 provide increased resolution of three-dimensional source localization with 12,700 voxels using swLORETA with the capacity to conduct cerebellar neurofeedback and neurofeedback of subcortical brain hubs such as the thalamus, amygdala, and habenula. Future applications of swLORETA z score neurofeedback represent another example of the transfer of knowledge gained by the human brain mapping initiatives to further aid in helping people with cognition problems as well as balance problems and parkinsonism. A brief review of the past, present, and future predictions of z score neurofeedback are discussed with special emphasis on new developments that point toward a bright and enlightened future in the field of EEG biofeedback.


Author(s):  
Xerxes D. Arsiwalla ◽  
Riccardo Zucca ◽  
Alberto Betella ◽  
Enrique Martinez ◽  
David Dalmazzo ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 317 ◽  
Author(s):  
Chi-Wen Jao ◽  
Bing-Wen Soong ◽  
Tzu-Yun Wang ◽  
Hsiu-Mei Wu ◽  
Chia-Feng Lu ◽  
...  

In addition to cerebellar degeneration symptoms, patients with spinocerebellar ataxia type 3 (SCA3) exhibit extensive involvements with damage in the prefrontal cortex. A network model has been proposed for investigating the structural organization and functional mechanisms of clinical brain disorders. For neural degenerative diseases, a cortical feature-based structural connectivity network can locate cortical atrophied regions and indicate how their connectivity and functions may change. The brain network of SCA3 has been minimally explored. In this study, we investigated this network by enrolling 48 patients with SCA3 and 48 healthy subjects. A novel three-dimensional fractal dimension-based network was proposed to detect differences in network parameters between the groups. Copula correlations and modular analysis were then employed to categorize and construct the structural networks. Patients with SCA3 exhibited significant lateralized atrophy in the left supratentorial regions and significantly lower modularity values. Their cerebellar regions were dissociated from higher-level brain networks, and demonstrated decreased intra-modular connectivity in all lobes, but increased inter-modular connectivity in the frontal and parietal lobes. Our results suggest that the brain networks of patients with SCA3 may be reorganized in these regions, with the introduction of certain compensatory mechanisms in the cerebral cortex to minimize their cognitive impairment syndrome.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Xiao Liu ◽  
Shuaizong Si ◽  
Bo Hu ◽  
Hai Zhao ◽  
Jian Zhu

The human brain is approximately a symmetric structure, although the functional brain does not exhibit symmetry. Functional brain aging process modelling is essential for the understanding of hypothesized generative mechanisms for human brain networks throughout one’s lifespan. We present a novel generative network model of the human functional brain network, which is the hybrid of the local naïve Bayes model and the anatomical similarity correction (LNBE). We use LNBE, as well as published generative network models to simulate the aging process of the functional brain network, to construct artificial brain networks and to reveal the generative mechanisms and evolutionary patterns of human functional brain across human lifespans. It is suggested that the idea of classifying common neighbours while considering anatomical distances during network formation can provide a much more similar generative mechanism of the human fMRI brain aging process as well as a more practical generative network model of it. We hold that studies on brain normal aging process modelling have the potential to improve the way in which early warnings for latent injury or disease are practised today and advance healthcare.


Author(s):  
Mingliang Wang ◽  
Jiashuang Huang ◽  
Mingxia Liu ◽  
Daoqiang Zhang

Brain network analysis can help reveal the pathological basis of neurological disorders and facilitate automated diagnosis of brain diseases, by exploring connectivity patterns in the human brain. Effectively representing the brain network has always been the fundamental task of computeraided brain network analysis. Previous studies typically utilize human-engineered features to represent brain connectivity networks, but these features may not be well coordinated with subsequent classifiers. Besides, brain networks are often equipped with multiple hubs (i.e., nodes occupying a central position in the overall organization of a network), providing essential clues to describe connectivity patterns. However, existing studies often fail to explore such hubs from brain connectivity networks. To address these two issues, we propose a Connectivity Network analysis method with discriminative Hub Detection (CNHD) for brain disease diagnosis using functional magnetic resonance imaging (fMRI) data. Specifically, we incorporate both feature extraction of brain networks and network-based classification into a unified model, while discriminative hubs can be automatically identified from data via ℓ1-norm and ℓ2,1-norm regularizers. The proposed CNHD method is evaluated on three real-world schizophrenia datasets with fMRI scans. Experimental results demonstrate that our method not only outperforms several state-of-the-art approaches in disease diagnosis, but also is effective in automatically identifying disease-related network hubs in the human brain.


2014 ◽  
Vol 369 (1653) ◽  
pp. 20130531 ◽  
Author(s):  
Petra E. Vértes ◽  
Aaron Alexander-Bloch ◽  
Edward T. Bullmore

Rich clubs arise when nodes that are ‘rich’ in connections also form an elite, densely connected ‘club’. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaojin Li ◽  
Xintao Hu ◽  
Changfeng Jin ◽  
Junwei Han ◽  
Tianming Liu ◽  
...  

Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.


Sign in / Sign up

Export Citation Format

Share Document