scholarly journals Cement-Based Piezoelectricity Application: A Theoretical Approach

2021 ◽  
Author(s):  
Daniel A. Triana-Camacho ◽  
Jorge H. Quintero-Orozco ◽  
Jaime A. Perez-Taborda

The linear theory of piezoelectricity has widely been used to evaluate the material constants of single crystals and ceramics, but what happens with amorphous structures that exhibit piezoelectric properties such as cement-based? In this chapter, we correlate the theoretical and experimental piezoelectric parameters for small deformations after compressive stress–strain, open circuit potential, and impedance spectroscopy on cement-based. Here, in detail, we introduce the theory of piezoelectricity for large deformations without including a functional for the energy; also, we show two generating equations in terms of a free energy’s function for later it will be reduced to constitutional equations of piezoelectricity for infinitesimal deformations. Finally, here is shown piezoelectric and electrical parameters of gold nanoparticles mixed to cement paste: the axial elasticity parameter Y = 323.5 ± 75.3 kN / m 2 , the electroelastic parameter γ = − 20.5 ± 6.9 mV / kN , and dielectric constant ε = 939.6 ± 82.9 ε 0 F / m , which have an interpretation as linear theory parameters s ijkl D , g kij and ε ik T discussed in the chapter.


2019 ◽  
Vol 16 (1) ◽  
pp. 65
Author(s):  
Rahmi Dewi ◽  
Tiara Pertiwi ◽  
Krisman Krisman

The thin film of Barium Strontium Titanate (BST) has been studied withcomposition ofby using sol-gel method that annealed in temperature of 600oC and 650oC. The thin film of BST is characterized by using Field Emission Scanning Electron Microscopy (FESEM) and an impedance spectroscopy. The results of  FESEM characterization for samples in temperature of 600oC and 650oC are 55.83 nm and 84.88 nm in thickness respectively. The result of impedance spectroscopy characterization given frequency values obtained by the impedance value of real and imaginary.The capacitance value at a frequency of 20 Hz from a thin film of BST in temperature of 600oC and 650oC are 69.36Fand138.70F. The dielectric constant of the thin film of BST in temperature of 600oC and 650oC are 22.17 dan 131.56 respectively.





2014 ◽  
Vol 18 (08n09) ◽  
pp. 642-651 ◽  
Author(s):  
Audacity Maringa ◽  
Tebello Nyokong

We report on the electrodeposition of gold nanoparticles ( AuNPs ) on a glassy carbon electrode (GCE) followed by deposition of nickel tetrasulfonated phthalocyanine ( NiTSPc ) film by electropolymerization (poly- NiTSPc -GCE) to form Poly- NiTSPc / AuNPs -GCE. The presence of the gold nanoparticles caused a lowering of the anodic and cathodic peak separation (ΔE p ) of ferricyanide from 126 mV on poly- NiTSPc to 110 mV on poly- NiTSPc / AuNPs . The electrooxidation of nitrite improved on modified electrodes compared to GCE, with the latter giving E p = 0.78 V and the modified electrodes gave E p = 0.62 V or 0.61 V. Poly- NiTSPc / AuNPs -GCE had higher currents compared to poly- NiTSPc -GCE. This indicates the enhancement effect caused by the AuNPs . Electrochemical impedance spectroscopy and chronoamperometric studies also showed that poly- NiTSPc / AuNPs -GCE was a better electrocatalyst than poly- NiTSPc -GCE or AuNPs -GCE.



2017 ◽  
Vol 744 ◽  
pp. 380-384
Author(s):  
Hui Tong ◽  
Wen Li Han ◽  
Zhong Ping Xu ◽  
Yan Jun Zhang ◽  
Zhu Lin ◽  
...  

Electrochemical impedance spectroscopy (EIS) is a technology of nondestructive electrochemical testing. In this paper, EIS is applied to study the corrosion processes of Al-Mg coatings. In the initial 24 h of immersion in 3.5% NaCl solution, passive films of Al-Mg coatings dissolve quickly. As time passed, corrosion products increase on surface gradually, which can inhibit corrosion. After 480h of immersion, corrosion products fully cover on Al-Mg coatings’ surface. The EIS of different corrosion processes are fitted by three equivalent circuits corresponding to the three corrosion processes. In the test of open circuit potentials (OCP), OCP is instable in the initial 24 h of immersion. As immersion time goes by, OCP tends to stabilization at about -0.90 V. Measurements of scanning electron microscope (SEM) confirm the conclusions of electrochemical measurements.



2013 ◽  
Vol 1 (4) ◽  
pp. 630-637 ◽  
Author(s):  
Yunzhang Lu ◽  
Zhengguo Xiao ◽  
Yongbo Yuan ◽  
Haimei Wu ◽  
Zhongwei An ◽  
...  


2011 ◽  
Vol 157 (1) ◽  
pp. 189-194 ◽  
Author(s):  
Li-Dong Li ◽  
Hong-Tao Zhao ◽  
Zheng-Bo Chen ◽  
Xiao-Jiao Mu ◽  
Lin Guo


Paliva ◽  
2021 ◽  
pp. 118-122
Author(s):  
David Dašek ◽  
Petr Roztočil ◽  
Jan Macák

The presented study concerns with the corrosion kinetics of two zirconium alloys: Zr-Nb-Sn-Fe and Zr-Nb-Fe. Alloy samples were pre-exposed at 360 °C in a LiOH solution containing 70 mg/l of lithium ions. Ex-situ electrochemical impedance spectroscopy (EIS) performed in 0.5 M potassium sulphate solution at 25 °C was used to study the properties of the oxide and kinetic transient effect. Evaluation of the impedance spectroscopy data was based on application of a simple equivalent circuit. The setup of the equivalent circuit conformed to Jonscher´s universal law of dielectric response. The analysis of the impedance data was aimed at estimation of non-dispersive capacitance of the oxide formed during the pre-exposure. Effective values of dielectric constant were calculated using the non-dispersive capacitance and the oxide thickness values, calculated from weight gains. For the pre-transient samples relatively higher values of dielectric constants were obtained. Typical pre-transient dielectric constants for Zr-Nb-Sn-Fe alloy ranged between 20–21, while slightly lower values were obtained for Zr-Nb-Fe alloy. In both alloys steep and significant decrease in effective dielectric constant (e_ef = 9–13) was found for the transient samples. The decrease correlated very well with the drop in percentage of tetragonal oxide determined by Raman spectroscopy and corresponded to the increase of the weight gains of the transient samples. Literature data indicate values of dielectric constants for tetragonal zirconium oxide between 38–46, while those for monoclinic oxide are usually presented between 12–22. The evidenced changes in dielectric constants are therefore in agreement with the expected decrease of tetragonal phase fraction in the oxide layer during the transient. In the Zr-Nb-Sn-Fe post-transient samples values of dielectric constant increased again to 18–20, therefore almost to the pre-transient level. This increase was not evidenced with Raman spectroscopy data, which show constant low content of the tetragonal fraction. Possible explanation of this disagreement is the location of the newly formed post-transient tetragonal oxide presumably at the metal/oxide interface. Oxide thickness of the post-transi-ent samples is 4–7 m and the oxide/metal interface is beyond access of the laser beam of Raman spectrometer. We can conclude that using ex-situ EIS, the transient was observable in both alloys; the change in the ratio of monoclinic and tetragonal phase can be evaluated based on the difference of effective dielectric constant of the two phases. The Zr-Nb-Sn-Fe alloy showed the onset of the transient after the 105th day of pre-exposure, but the change in the ratio of the monoclinic and tetragonal phases was less significant than in the Zr-Nb-Fe alloy, in which, however, the transient could be observed only after 147 days of pre-exposure. The resulting values of the effective dielectric constant of oxides correlated well with the percentage of tetragonal oxide determined by Raman spectroscopy and with the results of the weight gain method.



Sign in / Sign up

Export Citation Format

Share Document