scholarly journals Recent Progress in the Electrochemical Exfoliation of Colloidal Graphene: A Review

2021 ◽  
Author(s):  
Randhir Singh

Graphene is a wonder nanomaterial which is used in a wide variety of electronics applications because of its excellent electrical, optical, chemical and mechanical properties. For the efficient use of graphene in the preparation of modern electronics devices it is imperative to first prepare a colloidal solution of graphene. Although various techniques are being used for the synthesis of colloidal form of graphene, the synthesis of colloidal graphene via electrochemical exfoliation is time saving and easy, facile method which can be easily performed in the laboratory without any expensive and sophisticated equipment as required in other techniques. Through electrochemical exfoliation of colloidal graphene, high quality graphene can be obtained within short time. Further, after the electrochemical exfoliation of colloidal graphene, the colloidal solution is stable in the organic solvent for few weeks. The conducting electrodes prepared by this colloidal solution of graphene have wide application in the areas of flexible energy storage devices and sensors fabrication.

2020 ◽  
Vol 17 (Issue 1) ◽  
pp. 08-15
Author(s):  
Sameena Mahtab ◽  
Pragati Joshi ◽  
Bhagwati Arya ◽  
M.G.H. Zaidi ◽  
Tanveer Irshad Siddiqui

We have reviewed recent progress on various types of humidity sensors as it is one of the most significant issues in various areas of sensing appliances such as instrumentation, charge storage automated systems, industries and agriculture. Various effective approaches have been discussed to develop ceramic, semiconducting and polymer based graphite sensors. It was found that graphite based nanocomposite materials have unique potential for detecting humidity due to specific structure, high electrothermal conductivities, good mechanical properties, low cost and ultrahigh surface area that increases applications in the field of energy storage devices.


Author(s):  
Dipanwita Majumdar

Polyaniline in various forms has been widely explored as an electrode material for supercapacitors due to its high theoretical charge storage capacity, facile-cost-effective synthesis, good mechanical strength and ultrafast charge transport. However, commercialization of such pristine forms is very much restricted by low solubilities, rapid agglomeration during device design accompanied by poor electrochemical life and fast environmental decomposition. The blending with nano-carbon materials, metal oxides and other competent materials, may result in high quality materials– “nanocomposites” with superior features is ideally fit for future generation energy storage devices. The present chapter deals with detailed discussions on designing, the fabrication of such binary and ternary nanocomposites, correlating their morphology with electrochemical behavior, so as to optimize their supercapacitive performances. Such an attempt would help to outline the present status and future aspects of these materials which will be of first-hand assistance especially to the beginners to this field of research.


RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64395-64403 ◽  
Author(s):  
Pawan Kumar Srivastava ◽  
Premlata Yadav ◽  
Subhasis Ghosh

High yield production of high quality graphene is essential for its application in electronics, optoelectronics and energy storage devices.


2020 ◽  
Vol 4 (3) ◽  
pp. 729-749 ◽  
Author(s):  
Ji-Shi Wei ◽  
Tian-Bing Song ◽  
Peng Zhang ◽  
Xiao-Qing Niu ◽  
Xiao-Bo Chen ◽  
...  

This review summarizes the recent progress in the design and preparation of multiple electrochemical energy storage devices utilizing carbon dots, and elaborates the positive effects of carbon dots on the resulting electrodes and devices.


2016 ◽  
Vol 6 (17) ◽  
pp. 1600490 ◽  
Author(s):  
Muhammad Yousaf ◽  
Hao Tian H. Shi ◽  
Yunsong Wang ◽  
Yijun Chen ◽  
Zhimin Ma ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 2913-2933 ◽  
Author(s):  
Wen Tao Jing ◽  
Chun Cheng Yang ◽  
Qing Jiang

Sodium-ion batteries with metallic Sn- and Sb-based anodes have great potential for application in large-scale green energy storage devices.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax0648 ◽  
Author(s):  
Yongyuan Ren ◽  
Jiangna Guo ◽  
Ziyang Liu ◽  
Zhe Sun ◽  
Yiqing Wu ◽  
...  

Gels that are freeze-resistant and heat-resistant and have high ultimate tensile strength are desirable in practical applications owing to their potential in designing flexible energy storage devices, actuators, and sensors. Here, a simple method for fabricating ionic liquid (IL)–based click-ionogels using thiol-ene click chemistry under mild condition is reported. These click-ionogels continue to exhibit excellent mechanical properties and resilience after 10,000 fatigue cycles. Moreover, due to several unique properties of ILs, these click-ionogels exhibit high ionic conductivity, transparency, and nonflammability performance over a wide temperature range (−75° to 340°C). Click-ionogel–based triboelectric nanogenerators exhibit excellent mechanical, freeze-thaw, and heat stability. These promising features of click-ionogels will promote innovative applications in flexible and safe device design.


Sign in / Sign up

Export Citation Format

Share Document