scholarly journals Effect of Endocrine Disrupting Chemicals on HPG Axis: A Reproductive Endocrine Homeostasis

2021 ◽  
Author(s):  
Priya Gupta ◽  
Archisman Mahapatra ◽  
Anjali Suman ◽  
Rahul Kumar Singh

The hypothalamic–pituitary-gonadal (HPG) axis plays a crucial and integrative role in the mammalian endocrine regulation to maintain homeostasis. The HPG axis is primarily responsible for governing all the hormonal events related to reproductive activity. Endocrine-disrupting chemicals (EDCs) comprise a diverse group of naturally occurring and synthetic compounds that mimic and interfere with the endogenous chemical hormones. Epidemiological investigations have shown increasing evidence of altered development and detrimental effects on reproductive health during the past 50 years associated with endocrine disruptors affecting the HPG axis. The pleiotropic harmful effects of EDCs act through hormone-dependent downstream signaling pathways responsible for gonad development either through direct interaction with steroid hormone receptor or via epigenetic regulation. Hence, this chapter summarizes the biological plausibility of EDCs exposure and elucidates the mechanism of action underlying EDCs affecting the regulatory circuits of the mammalian HPG axis and reproductive function.

2021 ◽  
pp. 112040
Author(s):  
G. Delbes ◽  
M. Blázquez ◽  
J.I. Fernandino ◽  
P. Grigorova ◽  
B.F. Hales ◽  
...  

Reproduction ◽  
2011 ◽  
Vol 142 (5) ◽  
pp. 633-646 ◽  
Author(s):  
Zelieann R Craig ◽  
Wei Wang ◽  
Jodi A Flaws

Endocrine-disrupting chemicals (EDCs) are exogenous agents with the ability to interfere with processes regulated by endogenous hormones. One such process is female reproductive function. The major reproductive organ in the female is the ovary. Disruptions in ovarian processes by EDCs can lead to adverse outcomes such as anovulation, infertility, estrogen deficiency, and premature ovarian failure among others. This review summarizes the effects of EDCs on ovarian function by describing how they interfere with hormone signaling via two mechanisms: altering the availability of ovarian hormones, and altering binding and activity of the hormone at the receptor level. Among the chemicals covered are pesticides (e.g. dichlorodiphenyltrichloroethane and methoxychlor), plasticizers (e.g. bisphenol A and phthalates), dioxins, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons (e.g. benzo[a]pyrene).


2013 ◽  
Vol 21 (2) ◽  
pp. T13-T31 ◽  
Author(s):  
Douglas A Gibson ◽  
Philippa T K Saunders

Endocrine disrupting chemicals (EDC) are ubiquitous and persistent compounds that have the capacity to interfere with normal endocrine homoeostasis. The female reproductive tract is exquisitely sensitive to the action of sex steroids, and oestrogens play a key role in normal reproductive function. Malignancies of the female reproductive tract are the fourth most common cancer in women, with endometrial cancer accounting for most cases. Established risk factors for development of endometrial cancer include high BMI and exposure to oestrogens or synthetic compounds such as tamoxifen. Studies on cell and animal models have provided evidence that many EDC can bind oestrogen receptors and highlighted early life exposure as a window of risk for adverse lifelong effects on the reproductive system. The most robust evidence for a link between early life exposure to EDC and adverse reproductive health has come from studies on women who were exposedin uteroto diethylstilbestrol. Demonstration that EDC can alter expression of members of the HOX gene cluster highlights one pathway that might be vulnerable to their actions. In summary, evidence for a direct link between EDC exposure and cancers of the reproductive system is currently incomplete. It will be challenging to attribute causality to any single EDC when exposure and development of malignancy may be separated by many years and influenced by lifestyle factors such as diet (a source of phytoestrogens) and adiposity. This review considers some of the evidence collected to date.


2020 ◽  
Vol 21 (23) ◽  
pp. 9191
Author(s):  
Elizabeth C. Plunk ◽  
Sean M. Richards

Anthropogenic endocrine-disrupting chemicals (EDCs) can contaminate air, soil, and water. Human exposures to EDCs occur through inhalation, absorption, and ingestion. EDCs act by disrupting various pathways in the endocrine system. When the hypothalamic–pituitary–gonadal (HPG) axis is disrupted by EDCs, there can be effects on fertility in both men and women. Not only can fertility be indirectly affected by EDC disruptions of the HPG axis, but EDCs can also directly affect the menstrual cycle and sperm morphology. In this review, we will discuss the current findings on EDCs that can be inhaled. This review examines effects of exposure to prominent EDCs: brominated and organophosphate flame retardants, diesel exhaust, polycyclic aromatic hydrocarbons, cadmium and lead, TCDD, and polychlorinated biphenyls on fertility through alterations that disrupt the HPG axis and fertility through inhalation. Although the studies included herein include multiple exposure routes, all the studies indicate receptor interactions that can occur from inhalation and the associated effects of all compounds on the HPG axis and subsequent fertility.


2017 ◽  
Vol 33 (7) ◽  
pp. 601-609 ◽  
Author(s):  
Iwona Sidorkiewicz ◽  
Kamil Zaręba ◽  
Sławomir Wołczyński ◽  
Jan Czerniecki

Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.


2021 ◽  
Author(s):  
Valentine Suteau ◽  
Patrice Rodien ◽  
Mathilde Munier

Endocrine-disrupting chemicals have received significant concern, since they ubiquitously persist in the environment and are able to induce adverse effects on health, and more particularly on reproductive function. Most of the studies focused on nuclear hormone receptors as mediators of sex steroid hormones signaling. However, there are increasing evidences that peptides hormones of the Hypothalamo-Pituitary-Gonadal axis are targets of endocrine-disrupting chemicals (as Gonadotropin-Releasing Hormone, Follicle-Stimulating Hormone, Luteinizing Hormone…). The majority of these hormones act on G protein-coupled membrane receptors. This review summarizes the effects of endocrine-disrupting chemicals on homeostasis of peptides hormone of Hypothalamo-Pituitary-Gonadal axis and on their G protein-coupled membrane receptors signaling revealed by experimental, clinical, and epidemiological studies in human.


Sign in / Sign up

Export Citation Format

Share Document