scholarly journals Advanced Modeling of Single Degree of Freedom System for Earthquake Ground Motion Using LabVIEW Software

2021 ◽  
Author(s):  
R.B. Malathy ◽  
Govardhan Bhat ◽  
U.K. Dewangan

In this paper, the structural responses at discrete time steps are evaluated to understand the linear dynamics characteristics of a structural system using LabVIEW (Laboratory Virtual Instrument Engineering Workbench) tool. Time History Analysis (THA) which is an essential procedure to design a reliable structure when the structure is subjected to dynamic loading is taken into consideration for the study. Direct integration method was used to find out the dynamic response of the structure as it is applicable for both linear as well as nonlinear range. Block diagram that perform step-by-step integration to analyze the linear single degree of freedom (SDOF) system has been prepared in LabVIEW. The processing of data is carried out till the equilibrium is satisfied at all discrete time points within the interval of solution instead of any time t. Different ground motion time histories were considered for THA and responses of the SDOF system are evaluated. The results from LabVIEW were validated and the accuracy of the algorithms generated are discussed. It is observed that the accuracy and stability of the final solution depends on the variation of displacement, velocity and acceleration that is assumed in each step. Thus, LabVIEW workbench can therefore be recognized as an effective instrument in structural engineering owing to its fast sampling features.

Author(s):  
R. C. Fenwick ◽  
B. J. Davidson ◽  
B. T. Chung

The results of several thousands of inelastic time history analyses, which have been made on single degree of freedom structures to assess P-delta effects induced in earthquakes, are reviewed. The principal factors influencing P-delta actions are shown to be the ductility, the duration of the severe ground motion, the level of damping and the period of the structure. A method of designing for P-delta effects for single degree of freedom structures is presented. A limited number of analyses of multi-storey frames and walls indicate that the approach may be used for multi-storey structures. This paper gives background information on the P-delta method of analysis given in an appendix to the commentary of the proposed loading code.


2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.


2018 ◽  
Vol 34 (3) ◽  
pp. 1177-1199 ◽  
Author(s):  
Pablo Heresi ◽  
Héctor Dávalos ◽  
Eduardo Miranda

This paper presents a ground motion prediction model (GMPM) for estimating medians and standard deviations of the random horizontal component of the peak inelastic displacement of 5% damped single-degree-of-freedom (SDOF) systems, with bilinear hysteretic behavior and 3% postelastic stiffness ratio, directly as a function of the earthquake magnitude and the distance to the source. The equations were developed using a mixed effects model, with 1,662 recorded ground motions from 63 seismic events. In the proposed model, the median is computed as a function of the vibration period and the normalized strength of the system, as well as the event magnitude and the Joyner-Boore distance to the source. The standard deviation of the model is computed as a function of the vibration period and the normalized strength of the system. The proposed model has the advantage of not requiring an auxiliary elastic GMPM to predict the median and dispersion of peak inelastic displacement.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Bin Tang ◽  
M. J. Brennan

This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration.


2020 ◽  
Vol 99 (3) ◽  
pp. 1781-1799
Author(s):  
Luca Marino ◽  
Alice Cicirello

AbstractThis paper presents an experimental investigation of the dynamic behaviour of a single-degree-of-freedom (SDoF) system with a metal-to-metal contact under harmonic base or joined base-wall excitation. The experimental results are compared with those yielded by mathematical models based on a SDoF system with Coulomb damping. While previous experiments on friction-damped systems focused on the characterisation of the friction force, the proposed approach investigates the steady response of a SDoF system when different exciting frequencies and friction forces are applied. The experimental set-up consists of a single-storey building, where harmonic excitation is imposed on a base plate and a friction contact is achieved between a steel top plate and a brass disc. The experimental results are expressed in terms of displacement transmissibility, phase angle and top plate motion in the time and frequency domains. Both continuous and stick-slip motions are investigated. The main results achieved in this paper are: (1) the development of an experimental set-up capable of reproducing friction damping effects on a harmonically excited SDoF system; (2) the validation of the analytical model introduced by Marino et al. (Nonlinear Dyn, 2019. https://doi.org/10.1007/s11071-019-04983-x) and, particularly, the inversion of the transmissibility curves in the joined base-wall motion case; (3) the systematic observation of stick-slip phenomena and their validation with numerical results.


Sign in / Sign up

Export Citation Format

Share Document