scholarly journals Critical Response of Single-Degree-of-Freedom Damped Bilinear Hysteretic System under Double Impulse As Substitute for Near-Fault Ground Motion

Author(s):  
Hiroki Akehashi ◽  
Kotaro Kojima ◽  
Izuru Takewaki
2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.


2018 ◽  
Vol 34 (3) ◽  
pp. 1177-1199 ◽  
Author(s):  
Pablo Heresi ◽  
Héctor Dávalos ◽  
Eduardo Miranda

This paper presents a ground motion prediction model (GMPM) for estimating medians and standard deviations of the random horizontal component of the peak inelastic displacement of 5% damped single-degree-of-freedom (SDOF) systems, with bilinear hysteretic behavior and 3% postelastic stiffness ratio, directly as a function of the earthquake magnitude and the distance to the source. The equations were developed using a mixed effects model, with 1,662 recorded ground motions from 63 seismic events. In the proposed model, the median is computed as a function of the vibration period and the normalized strength of the system, as well as the event magnitude and the Joyner-Boore distance to the source. The standard deviation of the model is computed as a function of the vibration period and the normalized strength of the system. The proposed model has the advantage of not requiring an auxiliary elastic GMPM to predict the median and dispersion of peak inelastic displacement.


2021 ◽  
Author(s):  
Roohollah M. Pirooz ◽  
Soheila Habashi ◽  
Ali Massumi

Abstract Despite the various studies carried out to evaluate the effects of seismic sequences on structures, the matter of the time gap required to be considered between the mainshock and its corresponding aftershocks in dynamic analyses has never been focused on directly. This subtle but in the meantime effective subject, influences on the amount of accumulated damage caused by earthquake sequences. In the present study, 244 near fault ground motion components from 122 earthquakes were applied to a wide variety of single degree of freedom systems having vibrating period of 0.05 to 7 seconds with linear and nonlinear behavior. Furthermore, 2 planar steel moment-resisting frames, having 3 and 12 stories, were subjected to a set of 30 ground motion components. The purpose of this investigation was to estimate the required time for the structures to cease the free vibration at the end of the mainshock. The main purpose is to generate an estimation that is function of structural system’s parameters and the strong motion duration. Excellent correlations were obtained between the rest time and the following parameters: the combination of natural period of single degree of freedom systems, as well as the strong motion duration of earthquake sequences. In consequence, a formula is proposed which estimates the required optimized rest-time of a structure based on natural vibration period, as well as the duration of strong motion. Additionally, results obtained from the dynamic analysis of the steel frames validate the rest-time values achieved from the proposed formula.


2019 ◽  
Vol 5 (4) ◽  
pp. 130
Author(s):  
Serdar Ulusoy ◽  
Sinan Melih Niğdeli ◽  
Gebrail Bekdaş

In active control of structures, the parameters of controllers used application must be perfectly tuned. In that case, a good vibration reduction performance can be obtained without a stability problem. During the tuning process, the limit of control force and time delay of controller system must be considered for applicable design. In the study, the optimum parameters of Proportional-Derivative-Integral (PID) type controllers that are proportional gain (K), integral time (Ti) and derivative time (Td) were optimized by using teaching learning-based optimization (TLBO). TLBO is a metaheuristic algorithm imitating the teaching and learning phases of education in classroom. The optimization was done according to the responses of the structure under a directivity pulse of near fault ground motions. In the study, time delay was considered as 20 ms and the optimum parameters of PID controller for a single degree of freedom (SDOF) structural model was found for different control force limits. The performances and feasibility of the method were evaluated by using sets of near fault earthquake records.


2021 ◽  
Author(s):  
R.B. Malathy ◽  
Govardhan Bhat ◽  
U.K. Dewangan

In this paper, the structural responses at discrete time steps are evaluated to understand the linear dynamics characteristics of a structural system using LabVIEW (Laboratory Virtual Instrument Engineering Workbench) tool. Time History Analysis (THA) which is an essential procedure to design a reliable structure when the structure is subjected to dynamic loading is taken into consideration for the study. Direct integration method was used to find out the dynamic response of the structure as it is applicable for both linear as well as nonlinear range. Block diagram that perform step-by-step integration to analyze the linear single degree of freedom (SDOF) system has been prepared in LabVIEW. The processing of data is carried out till the equilibrium is satisfied at all discrete time points within the interval of solution instead of any time t. Different ground motion time histories were considered for THA and responses of the SDOF system are evaluated. The results from LabVIEW were validated and the accuracy of the algorithms generated are discussed. It is observed that the accuracy and stability of the final solution depends on the variation of displacement, velocity and acceleration that is assumed in each step. Thus, LabVIEW workbench can therefore be recognized as an effective instrument in structural engineering owing to its fast sampling features.


Sign in / Sign up

Export Citation Format

Share Document