scholarly journals Laser Treatment CVD Diamond Coated Punch for Ultra-Fine Piercing of Metallic Sheets

2021 ◽  
Author(s):  
Tatsuhiko Aizawa ◽  
Tadahiko Inonara ◽  
Tomoaki Yoshino ◽  
Tomomi Shiratori ◽  
Yohei Suzuki

CVD-diamond coated special tools have been widely utilized to prolong their tool life in practical production lines. WC (Co) punch for fine piercing of metallic sheets required for high wear-toughness to be free from chipping and damages and for high product quality to punch out the holes with sufficient dimensional accuracy. The laser trimming process was developed to reduce the surface roughness of diamond coating down to submicron level and to adjust its diamond layer dimensions with a sharp punch edge for accurate piercing. The pulsed laser irradiation was employed to demonstrate that micro-groove was accurately formed into the diamond coating. Less deterioration in the worked diamond film by this laser treatment was proved by the Raman spectroscopy. The femtosecond laser trimming was proposed to sharpen the punch edge down to 2 μm and to form the nano-textured punch side surfaces with the LIPSS (Laser Induced Periodic Surface Structuring)-period of 300 nm. Fine piercing experiments were performed to demonstrate that punch life was significantly extended to continuous punching in more than 10,000 shots and that mirror-shining hole surfaces were attained in every shot by regularly coining the nanotextures. The sharp punch edge with homogeneous edge profile was responsible for reduction of the induced damages into work sheet by piercing. The punch life was extended by the ejection mechanism of debris particles through the nanotextures on the punch side surface. The present laser treatment was useful in trimming and nanostructuring the complex-shaped punch edge for industrial application.

2020 ◽  
Vol 56 ◽  
pp. 591-601 ◽  
Author(s):  
Bing Guo ◽  
Jun Zhang ◽  
Mingtao Wu ◽  
Qingliang Zhao ◽  
Han Liu ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 2674 ◽  
Author(s):  
Tatsuhiko Aizawa ◽  
Tomomi Shiratori ◽  
Yoshihiro Kira ◽  
Tadahiko Inohara

In this study, a CVD (Chemical Vapor Deposition)-diamond coated tungsten carbide cobalt (WC (Co)) punch was trimmed to adjust its surface roughness and to significantly reduce its edge curvature for fine piercing by femtosecond laser processing. Through this laser trimming, the surface quality of the diamond coating and the punch edge profile were improved to less than 0.5 μm at the maximum roughness and 2 μm in the edge width, respectively. In parallel with this improvement of surface quality, the side surface of the diamond coating was modified to include nano-textures via the LIPSS (Laser Induced Periodic Surface Structuring) process. Through the fine piercing process, this nanotexture was transcribed onto the pierced hole surface together with fine shearing of the hole by piercing. WLI (White-Light Interferometry) and SEM (Scanning Electron Microscopy) were utilized to describe this transcription of nanotextures during the piercing process. These semiregular nanotextures with an LIPSS period of 300 nm on the pierced hole surface induced a blue colored surface plasmon.


2007 ◽  
Vol 16 (3) ◽  
pp. 609-615 ◽  
Author(s):  
S. Konoplyuk ◽  
T. Abe ◽  
T. Takagi ◽  
T. Uchimoto

1997 ◽  
Vol 12 (4) ◽  
pp. 320-327 ◽  
Author(s):  
E. J. Fiskerstran ◽  
K. Ryggen ◽  
L. T. Norvang ◽  
L. O. Svaasand

1981 ◽  
Vol 7 ◽  
Author(s):  
G. Battaglin ◽  
A. Carnera ◽  
G. Della Mea ◽  
P. Mazzoldi ◽  
Animesh K. Jain ◽  
...  

ABSTRACTWe present a comparative study (by 1.8 MeV 4He+ ion channeling) of virgin, self and Eu implanted single crystals of nickel, under irradiation with single ruby laser pulses. The as implanted Eu is nearly non-substitutional and remains so, even after laser treatment. The comparative defect dechanneling behaviour provides explicit evidence of defect-impurity interaction which may be suppressing the formation of an expected metastable solid solution in the Eu-Ni system, which possesses miscibility in the liquid phase. A clear surface Eu peak appears at 2.1 J/cm2.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mario Mordmüller ◽  
Viktoria Kleyman ◽  
Manuel Schaller ◽  
Mitsuru Wilson ◽  
Dirk Theisen-Kunde ◽  
...  

Abstract Laser photocoagulation is one of the most frequently used treatment approaches in ophthalmology for a variety of retinal diseases. Depending on indication, treatment intensity varies from application of specific micro injuries down to gentle temperature increases without inducing cell damage. Especially for the latter, proper energy dosing is still a challenging issue, which mostly relies on the physician’s experience. Pulsed laser photoacoustic temperature measurement has already proven its ability for automated irradiation control during laser treatment but suffers from a comparatively high instrumental effort due to combination with a conventional continuous wave treatment laser. In this paper, a simplified setup with a single pulsed laser at 10 kHz repetition rate is presented. The setup combines the instrumentation for treatment as well as temperature measurement and control in a single device. In order to compare the solely pulsed heating with continuous wave (cw) tissue heating, pulse energies of 4 µJ were applied with a repetition rate of 1 kHz to probe the temperature rise, respectively. With the same average laser power of 60 mW an almost identical temporal temperature course was retrieved in both irradiation modes as expected. The ability to reach and maintain a chosen aim temperature of 41 °C is demonstrated by means of model predictive control (MPC) and extended Kalman filtering at a the measurement rate of 250 Hz with an accuracy of less than ±0.1 °C. A major advantage of optimization-based control techniques like MPC is their capability of rigorously ensuring constraints, e.g., temperature limits, and thus, realizing a more reliable and secure temperature control during retinal laser irradiation.


2010 ◽  
Vol 60 (2) ◽  
pp. 195-200
Author(s):  
Dong-Yeol KIM ◽  
Hak-Joon KIM ◽  
Sung-Jin SONG ◽  
Toshiyuki TAKAGI ◽  
Tetsuya UCHIMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document