scholarly journals Incremental Linear Switched Reluctance Actuator

2021 ◽  
Author(s):  
Aymen Lachheb ◽  
Lilia El Amraoui

Linear switched reluctance actuators are a focus of study for many applications because of their simple and robust electromagnetic structure, despite their lower thrust force density when compared with linear permanent magnet synchronous motors. This chapter deals with incremental linear actuator have switched reluctance structure. First, the different topologies of linear incremental actuators are mentioned. Furthermore, a special interest is focused on the switched reluctance linear actuator then the operating principal is explained. In addition, an analytical model of the proposed actuator is developed without taking account of the saturation in magnetic circuit. Finally, the control techniques that can be applied to the studied actuator are presented.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2805 ◽  
Author(s):  
Jordi Garcia-Amorós

Linear switched reluctance motors are a focus of study for many applications because of their simple and sturdy electromagnetic structure, despite their lower thrust force density when compared with linear permanent magnet synchronous motors. This study presents a novel linear switched reluctance structure enhanced by the use of permanent magnets. The proposed structure preserves the main advantages of the reluctance machines, that is, mechanical and thermal robustness, fault tolerant, and easy assembly in spite of the permanent magnets. The linear hybrid reluctance motor is analyzed by finite element analysis and the results are validated by experimental results. The main findings show a significant increase in the thrust force when compared with the former reluctance structure, with a low detent force.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


Sign in / Sign up

Export Citation Format

Share Document