scholarly journals Smart Grid Modernization: Opportunities and Challenges

2021 ◽  
Author(s):  
Saumen Dhara ◽  
Alok Kumar Shrivastav

Recently, there have been significant technological approaches for the bulk power grid. The customer demand is associated with conventional grid coupled large central generating stations through a high voltage transmission to a distribution system. Urban transmission systems are consistently progressing to meet the increasing needs for power and to replace old-pattern generation with native renewable generation and power provisions from outward green energy resources. Power grid is undergoing remarkable modernization towards advanced consistency, greater efficiency, and less cost by the incorporation of renewable energy and developed control technology. Quick developing nature of grid, consumer needs, and industrial invention situates substation modernization at the leading of grid transformation. Smart grid is essential to accomplish all the fastest technological reformations occurring in generation, transmission and distribution (T&D) of electric power, with growing application of sensors, computers and communications. In this study the recent trend and application of electric power grid is briefly enunciated.

Author(s):  
Md. Joniur Rahaman

The term "smart grid" refers to the transformation of the traditional electric power grid into a modern grid. Modernization of the present electric power system is an important step to implement the Smart Grid technology. The structure of the existing power sector in Bangladesh is almost a hundred years old. Due to which the power sector of Bangladesh facing huge power wastage. A Smart Grid also ensures the efficient transmission and distribution of electric power. This paper gives a brief description of Smart Grid, the latest trends, challenges, prospects, cost analysis of smart grid equipment, and its facility. The spotlight of this paper is to implement the Smart Grid's perspective to Bangladesh. That’s included to have new distributed generation technology, smart meter, a pilot project, etc. Also, the main objective of this paper is the comprehensive development of transmission and distribution loss reduction, which will be saving a big amount of capital every year. And that will play a huge role in the economy of Bangladesh to move forward in global progress.


Author(s):  
Saad Afzal

Smart Grid is a communication and automatic control capabilities in electric power grid system for improving efficiency, reliability, management, capabilities and security of electric power grid. Routing is important in Smart Grid to send data from one point to another point. Routing in Smart Grid is necessary to search /identify destination point/node for communication and to computer the best available route in the network topology among which the data to be sent during communication. Smart Grid can be a combination of fixed nodes (home appliances, smart meter, control centre, etc.) but the nature of communication between fixed nodes is dynamic due to the switch on/off or the fluctuation in electricity flow. Therefore the fixed nodes can also be disappeared from the network topology in Smart Grid. Existing routing protocols for Smart Grid are based on flooding mechanism. We would like to examine the feasibility of flooding free routing in Smart Grid. Then we will propose a flooding-free routing for Smart.


2017 ◽  
pp. 575-598
Author(s):  
Saad Afzal

Smart Grid is a communication and automatic control capabilities in electric power grid system for improving efficiency, reliability, management, capabilities and security of electric power grid. Routing is important in Smart Grid to send data from one point to another point. Routing in Smart Grid is necessary to search /identify destination point/node for communication and to computer the best available route in the network topology among which the data to be sent during communication. Smart Grid can be a combination of fixed nodes (home appliances, smart meter, control centre, etc.) but the nature of communication between fixed nodes is dynamic due to the switch on/off or the fluctuation in electricity flow. Therefore the fixed nodes can also be disappeared from the network topology in Smart Grid. Existing routing protocols for Smart Grid are based on flooding mechanism. We would like to examine the feasibility of flooding free routing in Smart Grid. Then we will propose a flooding-free routing for Smart.


2014 ◽  
Vol 641-642 ◽  
pp. 1227-1230
Author(s):  
Xue Song Zhou ◽  
Ya Fei Yuan ◽  
You Jie Ma

With the development of economic and technology, global resources crisis and environment issues have become increasingly prominent, all of these lead new challenges to the electric power grid. In the development of future power grid, Smart Grid (SG) represents a new direction of future development. Smart Distribution Grid (SDG) is an important breakthrough in SG as the last part of the power system to the user. Firstly, this paper gives the definition of SDG. Then it introduces the key technologies according to the requirement of SDG. Finally, it is concluded that SDG is the inevitable result of the development.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 989
Author(s):  
Wenjin Li ◽  
Bingkang Li ◽  
Rengcun Fang ◽  
Peipei You ◽  
Yuxin Zou ◽  
...  

In China, a new-round marketization reform of electricity industry is in progress, and the electricity transmission and distribution tariff reform is the core and important task. Currently, the electricity transmission and distribution tariff regulation has gone to the second round in China, and the electric power grid enterprises are facing a closed-loop regulatory system and an increasingly strict regulatory environment. Therefore, it is urgent to evaluate the risk of electric power grid enterprise that is related to electricity transmission and distribution tariff regulation, which can aid the electricity regulators and electric power grid enterprise operators to manage risk and promote the sustainable development of electric power industry. In this paper, a hybrid novel multi-criteria decision making (MCDM) method combining the fuzzy Best-Worst method (FBWM) and improved fuzzy comprehensive evaluation method based on a vague set is proposed for the risk evaluation of electric power grid enterprise related to electricity transmission and distribution tariff regulation. The risk evaluation index system is built. Subsequently, the FBWM is utilized to determine the optimal weights of electric power grid enterprise risk criteria, and the improved fuzzy comprehensive evaluation method that is based on vague set is employed to rank the comprehensive risk grade of electric power grid enterprise related to electricity transmission and distribution tariff regulation. The risk of a province-level electric power grid enterprise that is located in Northern China is empirically evaluated using the proposed MCDM method, and the result indicates that the overall risk of this province-level electric power grid enterprise belongs to ‘High’ grade, but it is very close to ‘Very High’ grade. The results indicate that the proposed hybrid novel MCDM method in this paper is effective and practical. Meanwhile, it provides a new view for the risk evaluation of electric power grid enterprise that is related to electricity transmission and distribution tariff regulation.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3112
Author(s):  
Donghyeon Lee ◽  
Seungwan Son ◽  
Insu Kim

Widespread interest in environmental issues is growing. Many studies have examined the effect of distributed generation (DG) from renewable energy resources on the electric power grid. For example, various studies efficiently connect growing DG to the current electric power grid. Accordingly, the objective of this study is to present an algorithm that determines DG location and capacity. For this purpose, this study combines particle swarm optimization (PSO) and the Volt/Var control (VVC) of DG while regulating the voltage magnitude within the allowable variation (e.g., ±5%). For practical optimization, the PSO algorithm is enhanced by applying load profile data (e.g., 24-h data). The objective function (OF) in the proposed PSO method considers voltage variations, line losses, and economic aspects of deploying large-capacity DG (e.g., installation costs) to transmission networks. The case studies validate the proposed method (i.e., optimal allocation of DG with the capability of VVC with PSO) by applying the proposed OF to the PSO that finds the optimal DG capacity and location in various scenarios (e.g., the IEEE 14- and 30-bus test feeders). This study then uses VVC to compare the voltage profile, loss, and installation cost improved by DG to a grid without DG.


Author(s):  
Hans Peter Kraemer ◽  
Anne Bauer ◽  
Michael Frank ◽  
Peter Van Hasselt ◽  
Peter Kummeth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document