scholarly journals Mining Numbers in Text: A Survey

2021 ◽  
Author(s):  
Minoru Yoshida ◽  
Kenji Kita

Both words and numerals are tokens found in almost all documents but they have different properties. However, relatively little attention has been paid in numerals found in texts and many systems treated the numbers found in the document in ad-hoc ways, such as regarded them as mere strings in the same way as words, normalized them to zeros, or simply ignored them. Recent growth of natural language processing (NLP) research areas has change this situations and more and more attentions have been paid to the numeracy in documents. In this survey, we provide a quick overview of the history and recent advances of the research of mining such relations between numerals and words found in text data.

AI Magazine ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 42-54 ◽  
Author(s):  
Vasile Rus ◽  
Sidney D’Mello ◽  
Xiangen Hu ◽  
Arthur Graesser

We report recent advances in intelligent tutoring systems with conversational dialogue. We highlight progress in terms of macro and microadaptivity. Macroadaptivity refers to a system’s capability to select appropriate instructional tasks for the learner to work on. Microadaptivity refers to a system’s capability to adapt its scaffolding while the learner is working on a particular task. The advances in macro and microadaptivity that are presented here were made possible by the use of learning progressions, deeper dialogue and natural language processing techniques, and by the use of affect-enabled components. Learning progressions and deeper dialogue and natural language processing techniques are key features of DeepTutor, the first intelligent tutoring system based on learning progressions. These improvements extend the bandwidth of possibilities for tailoring instruction to each individual student which is needed for maximizing engagement and ultimately learning.


2020 ◽  
Author(s):  
David DeFranza ◽  
Himanshu Mishra ◽  
Arul Mishra

Language provides an ever-present context for our cognitions and has the ability to shape them. Languages across the world can be gendered (language in which the form of noun, verb, or pronoun is presented as female or male) versus genderless. In an ongoing debate, one stream of research suggests that gendered languages are more likely to display gender prejudice than genderless languages. However, another stream of research suggests that language does not have the ability to shape gender prejudice. In this research, we contribute to the debate by using a Natural Language Processing (NLP) method which captures the meaning of a word from the context in which it occurs. Using text data from Wikipedia and the Common Crawl project (which contains text from billions of publicly facing websites) across 45 world languages, covering the majority of the world’s population, we test for gender prejudice in gendered and genderless languages. We find that gender prejudice occurs more in gendered rather than genderless languages. Moreover, we examine whether genderedness of language influences the stereotypic dimensions of warmth and competence utilizing the same NLP method.


Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment words extraction, polarity of sentiment words detection, and text sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. Vector representations has been used to compute various vector-based features and conduct systematically experiments to demonstrate their effectiveness. Using simple vector based features can achieve better results for text sentiment analysis of APP.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Graham Neubig ◽  
Patrick Littell ◽  
Chian-Yu Chen ◽  
Jean Lee ◽  
Zirui Li ◽  
...  

Language documentation is inherently a time-intensive process; transcription, glossing, and corpus management consume a significant portion of documentary linguists’ work. Advances in natural language processing can help to accelerate this work, using the linguists’ past decisions as training material, but questions remain about how to prioritize human involvement. In this extended abstract, we describe the beginnings of a new project that will attempt to ease this language documentation process through the use of natural language processing (NLP) technology. It is based on (1) methods to adapt NLP tools to new languages, based on recent advances in massively multilingual neural networks, and (2) backend APIs and interfaces that allow linguists to upload their data (§2). We then describe our current progress on two fronts: automatic phoneme transcription, and glossing (§3). Finally, we briefly describe our future directions (§4).


Author(s):  
Nazmun Nessa Moon ◽  
Imrus Salehin ◽  
Masuma Parvin ◽  
Md. Mehedi Hasan ◽  
Iftakhar Mohammad Talha ◽  
...  

<span>In this study we have described the process of identifying unnecessary video using an advanced combined method of natural language processing and machine learning. The system also includes a framework that contains analytics databases and which helps to find statistical accuracy and can detect, accept or reject unnecessary and unethical video content. In our video detection system, we extract text data from video content in two steps, first from video to MPEG-1 audio layer 3 (MP3) and then from MP3 to WAV format. We have used the text part of natural language processing to analyze and prepare the data set. We use both Naive Bayes and logistic regression classification algorithms in this detection system to determine the best accuracy for our system. In our research, our video MP4 data has converted to plain text data using the python advance library function. This brief study discusses the identification of unauthorized, unsocial, unnecessary, unfinished, and malicious videos when using oral video record data. By analyzing our data sets through this advanced model, we can decide which videos should be accepted or rejected for the further actions.</span>


2018 ◽  
Author(s):  
Jeremy Petch ◽  
Jane Batt ◽  
Joshua Murray ◽  
Muhammad Mamdani

BACKGROUND The increasing adoption of electronic health records (EHRs) in clinical practice holds the promise of improving care and advancing research by serving as a rich source of data, but most EHRs allow clinicians to enter data in a text format without much structure. Natural language processing (NLP) may reduce reliance on manual abstraction of these text data by extracting clinical features directly from unstructured clinical digital text data and converting them into structured data. OBJECTIVE This study aimed to assess the performance of a commercially available NLP tool for extracting clinical features from free-text consult notes. METHODS We conducted a pilot, retrospective, cross-sectional study of the accuracy of NLP from dictated consult notes from our tuberculosis clinic with manual chart abstraction as the reference standard. Consult notes for 130 patients were extracted and processed using NLP. We extracted 15 clinical features from these consult notes and grouped them a priori into categories of simple, moderate, and complex for analysis. RESULTS For the primary outcome of overall accuracy, NLP performed best for features classified as simple, achieving an overall accuracy of 96% (95% CI 94.3-97.6). Performance was slightly lower for features of moderate clinical and linguistic complexity at 93% (95% CI 91.1-94.4), and lowest for complex features at 91% (95% CI 87.3-93.1). CONCLUSIONS The findings of this study support the use of NLP for extracting clinical features from dictated consult notes in the setting of a tuberculosis clinic. Further research is needed to fully establish the validity of NLP for this and other purposes.


Sign in / Sign up

Export Citation Format

Share Document