scholarly journals Recent Developments in Path Planning for Unmanned Aerial Vehicles

2021 ◽  
Author(s):  
Abdul Majeed ◽  
Seong Oun Hwang

Unmanned aerial vehicles (UAVs) have demonstrated their effectiveness in performing diverse missions at significantly lower costs compared to the human beings. UAVs have the capabilities to reach and execute mission in those areas that are very difficult for humans to even reach such as forest, deserts, and mines. Integration of the latest technologies including reactive controls, sense and avoid, and onboard computations have strengthened their dominance further in various practical missions. Besides the innovative applications, the use of UAVs imposes several challenges, and one of those challenges is computing a low-cost path for aerial mission by avoiding obstacles as well as satisfying certain performance objectives (a.k.a path planning (PP)). To this end, this chapter provides a concise overview of various aspects concerning to PP including basics introduction of the subject matter, categorization of the PP approaches and problems, taxonomy of the essential components of the PP, performance objectives of the PP approaches, recent algorithms that have been proposed for PP in known and unknown environments, and future prospects of research in this area considering the emerging technologies. With this chapter, we aim to provide sufficient knowledge about one of the essential components of robotics technology (i.e., navigation) for researchers.

2021 ◽  
Vol 11 (8) ◽  
pp. 3417
Author(s):  
Nafis Ahmed ◽  
Chaitali J. Pawase ◽  
KyungHi Chang

Collision-free distributed path planning for the swarm of unmanned aerial vehicles (UAVs) in a stochastic and dynamic environment is an emerging and challenging subject for research in the field of a communication system. Monitoring the methods and approaches for multi-UAVs with full area surveillance is needed in both military and civilian applications, in order to protect human beings and infrastructure, as well as their social security. To perform the path planning for multiple unmanned aerial vehicles, we propose a trajectory planner based on Particle Swarm Optimization (PSO) algorithm to derive a distributed full coverage optimal path planning, and a trajectory planner is developed using a dynamic fitness function. In this paper, to obtain dynamic fitness, we implemented the PSO algorithm independently in each UAV, by maximizing the fitness function and minimizing the cost function. Simulation results show that the proposed distributed path planning algorithm generates feasible optimal trajectories and update maps for the swarm of UAVs to surveil the entire area of interest.


Author(s):  
C. Giannì ◽  
M. Balsi ◽  
S. Esposito ◽  
P. Fallavollita

Obstacle detection is a fundamental task for Unmanned Aerial Vehicles (UAV) as a part of a Sense and Avoid system. In this study, we present a method of multi-sensor obstacle detection that demonstrated good results on different kind of obstacles. This method can be implemented on low-cost platforms involving a DSP or small FPGA. In this paper, we also present a study on the typical targets that can be tough to detect because of their characteristics of reflectivity, form factor, heterogeneity and show how data fusion can often overcome the limitations of each technology.


2010 ◽  
Author(s):  
Antonios Tsourdos ◽  
Brian White ◽  
Madhavan Shanmugavel

Author(s):  
Zhe Zhang ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Cheng He

For stealth unmanned aerial vehicles (UAVs), path security and search efficiency of penetration paths are the two most important factors in performing missions. This article investigates an optimal penetration path planning method that simultaneously considers the principles of kinematics, the dynamic radar cross-section of stealth UAVs, and the network radar system. By introducing the radar threat estimation function and a 3D bidirectional sector multilayer variable step search strategy into the conventional A-Star algorithm, a modified A-Star algorithm was proposed which aims to satisfy waypoint accuracy and the algorithm searching efficiency. Next, using the proposed penetration path planning method, new waypoints were selected simultaneously which satisfy the attitude angle constraints and rank-K fusion criterion of the radar system. Furthermore, for comparative analysis of different algorithms, the conventional A-Star algorithm, bidirectional multilayer A-Star algorithm, and modified A-Star algorithm were utilized to settle the penetration path problem that UAVs experience under various threat scenarios. Finally, the simulation results indicate that the paths obtained by employing the modified algorithm have optimal path costs and higher safety in a 3D complex network radar environment, which show the effectiveness of the proposed path planning scheme.


2013 ◽  
Vol 44 ◽  
pp. 34-47 ◽  
Author(s):  
Wei Liu ◽  
Zheng Zheng ◽  
Kai-Yuan Cai

Author(s):  
Kai Yit Kok ◽  
Parvathy Rajendran

This paper presents an enhanced particle swarm optimization (PSO) for the path planning of unmanned aerial vehicles (UAVs). An evolutionary algorithm such as PSO is costly because every application requires different parameter settings to maximize the performance of the analyzed parameters. People generally use the trial-and-error method or refer to the recommended setting from general problems. The former is time consuming, while the latter is usually not the optimum setting for various specific applications. Hence, this study focuses on analyzing the impact of input parameters on the PSO performance in UAV path planning using various complex terrain maps with adequate repetitions to solve the tuning issue. Results show that inertial weight parameter is insignificant, and a 1.4 acceleration coefficient is optimum for UAV path planning. In addition, the population size between 40 and 60 seems to be the optimum setting based on the case studies.


Sign in / Sign up

Export Citation Format

Share Document