scholarly journals Evolution of Susceptibility of Strains of Candida Fluconazole and Determination of Antibiotic Resistance Genes

2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Khadije Rezaie Keikhaie ◽  
Fatemeh Moshtaghi ◽  
Forough Forghani ◽  
Maryam Sheykhzade Asadi ◽  
Samira Seyed Nejad ◽  
...  
Author(s):  
Gabriela Reichert ◽  
Stephan Hilgert ◽  
Johannes Alexander ◽  
Júlio César Rodrigues de Azevedo ◽  
Tobias Morck ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 203
Author(s):  
Delia Gambino ◽  
Domenico Vicari ◽  
Maria Vitale ◽  
Giorgia Schirò ◽  
Francesco Mira ◽  
...  

Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach.


2021 ◽  
Vol 37 (5) ◽  
pp. 123-131
Author(s):  
G.V. Presnova ◽  
V.G. Grigorenko ◽  
M.M. Ulyashova ◽  
М.Yu. Rubtsova

Abstract-Molecular genetic analysis methods based on the technology of colorimetric biochip have shown their effectiveness in identifying antibiotic resistance genes in bacteria. For the quantitative determination of nucleic acids, a comparative study of methods for converting digital color images of biochips into monochrome black-and-white versions using RGB and CMYK color models has been carried out. A 19-mer single-stranded oligonucleotide and two model mRNAs corresponding to the genes of two types of clinically relevant beta-lactamases (CTX-M and NDM) were studied as objects. The widest range of staining intensity and the best analytical characteristics for the determination of all types of studied nucleic acids were obtained using the red channel of the RGB color model. The detection limits were 0.10 ± 0.02 pmol/μl for the 19-mer oligonucleotide, and 3.0 ± 0.2 amol/μl and 8.0 ± 0.6 amol/μl for mRNA of beta-lactamases CTX-M-116 and NDM-1, respectively. The developed method can be used for the quantitative determination of expressing antibiotic resistance genes in bacteria with multiple resistance to antimicrobial drugs. Key words: colorimetric biochips, hybridization analysis, DNA, mRNA, antibiotic resistance, beta-lactamases The work was supported by the Government Program of the Lomonosov Moscow State University (АААА-А21-121011290089-4).


Gene Reports ◽  
2020 ◽  
Vol 21 ◽  
pp. 100875
Author(s):  
Mahsa Ziasistani ◽  
Shahriar Dabiri ◽  
Maryam Fekri Soofi Abadi ◽  
Setareh Agha Kuchak Afshari ◽  
Rasoul Ghaioumy ◽  
...  

2016 ◽  
Vol 1 (2) ◽  
pp. 22 ◽  
Author(s):  
Navindra Kumari Palanisamy ◽  
Parasakthi Navaratnam ◽  
Shamala Devi Sekaran

Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.


Sign in / Sign up

Export Citation Format

Share Document