Learning with ANIMA

2021 ◽  
Vol 13 (2) ◽  
pp. 181-192
Author(s):  
Rosen Lutskanov ◽  

The paper develops a semi-formal model of learning which modifies the traditional paradigm of artificial neural networks, implementing deep learning by means of a key insight borrowed from the works of Marvin Minsky: the so-called Principle of Non-Compromise. The principle provides a learning mechanism which states that conflicts in the processing of data to be integrated are a mark of unreliability or irrelevance; hence, lower-level conflicts should lead to higher-level weight-adjustments. This internal mechanism augments the external mechanism of weight adjustment by back-propagation, which is typical for the standard models of machine learning. The text is structured as follows: (§1) opens the discussion by providing an informal overview of real-world decision-making and learning; (§2) sketches a typology of decision architectures: the individualistic approach of classical decision theory, the general aggregation mechanism of social choice theory, the local aggregation mechanism of agent-based modeling, and the intermediate hierarchical model of Marvin Minsky's “Society of Mind”; (§3) sketches the general outline of ANIMA – a new model of decision-making and learning that borrows insights from Minsky's informal exposition; (§4) is the bulk of the paper; it provides a discussion of a toy exemplification of ANIMA which lets us see the Principle of Non-Compromise at work; (§5) lists some possible scenarios for the evolution of a model of this kind; (§6) is the closing section; it discusses some important differences between the way ANIMA was construed here and the typical formal rendering of learning by means of artificial neural networks and deep learning.

Author(s):  
Margaret A. Boden

Artificial neural networks (ANNs) are made up of many interconnected units, each one capable of computing only one thing. ANNs have myriad applications, from playing the stock market and monitoring currency fluctuations to recognizing speech or faces. ANNs are parallel-processing virtual machines implemented on classical computers. They are intriguing partly because they are very different from the virtual machines of symbolic AI. Sequential instructions are replaced by massive parallelism, top-down control by bottom-up processing, and logic by probability. ‘Artificial neural networks’ considers the wider implications of ANNs and discusses parallel distributed processing (PDP), learning in neural networks, back-propagation, deep learning, and hybrid systems.


2013 ◽  
Vol 773-774 ◽  
pp. 268-274
Author(s):  
Amir Ghiami ◽  
Ramin Khamedi

This paper presents an investigation of the capabilities of artificial neural networks (ANN) in predicting some mechanical properties of Ferrite-Martensite dual-phase steels applicable for different industries like auto-making. Using ANNs instead of different destructive and non-destructive tests to determine the material properties, reduces costs and reduces the need for special testing facilities. Networks were trained with use of a back propagation (BP) error algorithm. In order to provide data for training the ANNs, mechanical properties, inter-critical annealing temperature and information about the microstructures of many specimens were examined. After the ANNs were trained, the four parameters of yield stress, ultimate tensile stress, total elongation and the work hardening exponent were simulated. Finally a comparison of the predicted and experimental values indicates that the results obtained from the given input data reveal a good ability of the well-trained ANN to predict the described mechanical properties.


Author(s):  
Xuyến

Deep Neural Networks là một thuật toán dạy cho máy học, là phương pháp nâng cao của mạng nơ-ron nhân tạo (Artificial Neural Networks) nhiều tầng để học biểu diễn mô hình đối tượng. Bài báo trình bày phương pháp để phát hiện spike tự động, giải quyết bài toán cho các bác sỹ khi phân tích dữ liệu khổng lồ được thu thập từ bản ghi điện não để xác định một khu vực của não gây ra chứng động kinh. Hàng triệu mẫu được phân tích thủ công đã được đào tạo lại để tìm các gai liêp tiếp phát ra từ vùng não bị ảnh hưởng. Để đánh giá phương pháp đề xuất, tác giả đã xây dựng hệ thống trong đó sử dụng một số mô hình deep learning đưa vào thử nghiệm hỗ trợ các bác sỹ khám phát hiện và chẩn đoán sớm bệnh.


2021 ◽  
Author(s):  
Mateus Alexandre da Silva ◽  
Marina Neves Merlo ◽  
Michael Silveira Thebaldi ◽  
Danton Diego Ferreira ◽  
Felipe Schwerz ◽  
...  

Abstract Predicting rainfall can prevent and mitigate damages caused by its deficit or excess, besides providing necessary tools for adequate planning for the use of water. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities in the metropolitan region of Belo Horizonte, using artificial neural networks (ANN) trained with different climate variables, and to indicate the suitability of such variables as inputs to these models. The models were developed through the MATLAB® software version R2011a, using the NNTOOL toolbox. The ANN’s were trained by the multilayer perceptron architecture and the Feedforward and Back propagation algorithm, using two combinations of input data were used, with 2 and 6 variables, and one combination of input data with 3 of the 6 variables most correlated to observed rainfall from 1970 to 1999, to predict the rainfall from 2000 to 2009. The most correlated variables to the rainfall of the following month are the sequential number corresponding to the month, total rainfall and average compensated temperature, and the best performance was obtained with these variables. Furthermore, it was concluded that the performance of the models was satisfactory; however, they presented limitations for predicting months with high rainfall.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

2020 ◽  
Vol 9 (1) ◽  
pp. 7-10
Author(s):  
Hendry Fonda

ABSTRACT Riau batik is known since the 18th century and is used by royal kings. Riau Batik is made by using a stamp that is mixed with coloring and then printed on fabric. The fabric used is usually silk. As its development, comparing Javanese  batik with riau batik Riau is very slowly accepted by the public. Convolutional Neural Networks (CNN) is a combination of artificial neural networks and deeplearning methods. CNN consists of one or more convolutional layers, often with a subsampling layer followed by one or more fully connected layers as a standard neural network. In the process, CNN will conduct training and testing of Riau batik so that a collection of batik models that have been classified based on the characteristics that exist in Riau batik can be determined so that images are Riau batik and non-Riau batik. Classification using CNN produces Riau batik and not Riau batik with an accuracy of 65%. Accuracy of 65% is due to basically many of the same motifs between batik and other batik with the difference lies in the color of the absorption in the batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning   ABSTRAK   Batik Riau dikenal sejak abad ke 18 dan digunakan oleh bangsawan raja. Batik Riau dibuat dengan menggunakan cap yang dicampur dengan pewarna kemudian dicetak di kain. Kain yang digunakan biasanya sutra. Seiring perkembangannya, dibandingkan batik Jawa maka batik Riau sangat lambat diterima oleh masyarakat. Convolutional Neural Networks (CNN) merupakan kombinasi dari jaringan syaraf tiruan dan metode deeplearning. CNN terdiri dari satu atau lebih lapisan konvolutional, seringnya dengan suatu lapisan subsampling yang diikuti oleh satu atau lebih lapisan yang terhubung penuh sebagai standar jaringan syaraf. Dalam prosesnya CNN akan melakukan training dan testing terhadap batik Riau sehingga didapat kumpulan model batik yang telah terklasi    fikasi berdasarkan ciri khas yang ada pada batik Riau sehingga dapat ditentukan gambar (image) yang merupakan batik Riau dan yang bukan merupakan batik Riau. Klasifikasi menggunakan CNN menghasilkan batik riau dan bukan batik riau dengan akurasi 65%. Akurasi 65% disebabkan pada dasarnya banyak motif yang sama antara batik riau dengan batik lainnya dengan perbedaan terletak pada warna cerap pada batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning


Sign in / Sign up

Export Citation Format

Share Document