Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains

2018 ◽  
Vol 38 (20) ◽  
Author(s):  
牛豪阁 NIU Haoge ◽  
张芬 ZHANG Fen ◽  
于爱灵 YU Ailing ◽  
王放 WANG Fang ◽  
张军周 ZHANG Junzhou ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
J. Julio Camarero ◽  
Cristina Valeriano ◽  
Antonio Gazol ◽  
Michele Colangelo ◽  
Raúl Sánchez-Salguero

Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 817 ◽  
Author(s):  
Lingnan Zhang ◽  
Hui Li ◽  
Yilin Ran ◽  
Keyi Wang ◽  
Xiaomin Zeng ◽  
...  

Increasing evidence suggests that extreme droughts cause more frequent tree growth reduction. To understand the consequences of these droughts better, this study used tree-ring cores from nine sites to investigate how moisture and altitudinal gradients affect the radial growth of Picea crassifolia Kom., a common species in the Qilian Mountains in northwest China. The total annual precipitation and mean annual temperature in the eastern region were higher than those in the western region of the Qilian Mountains. The trees in the eastern region showed stronger resistance to drought than those in the west, as they had a smaller difference in radial growth between drought disturbance and pre-drought disturbance. At the same time, the trees in the east showed weaker ability to recover from drought, as they had a subtle difference in radial growth between post-drought disturbance and drought disturbance. Furthermore, the trees in the east also showed weaker relative resilience to drought, as they had a small difference in radial growth between post-drought and drought disturbance weighted by growth in pre-drought disturbance. For trees below 3000 m a.s.l., trees with high resistance capacity usually had low recovery capacity and low relative resilience capacity. Trees at higher altitudes also showed stronger resistance to drought and weaker ability to recover from drought after a drought event than those at lower altitudes in the middle of the Qilian Mountains. Trees at lower altitudes in the middle of the Qilian Mountains had more difficulties recovering from more severe and longer drought events. In the context of global warming, trees in the western region and at lower altitudes should be given special attention and protection in forest management to enhance their resistance to extreme droughts.


2017 ◽  
Vol 44 ◽  
pp. 76-83 ◽  
Author(s):  
Quanyan Tian ◽  
Zhibin He ◽  
Shengchun Xiao ◽  
Xiaomei Peng ◽  
Aijun Ding ◽  
...  

2001 ◽  
Vol 222 (3) ◽  
pp. 586-590 ◽  
Author(s):  
X.L Chen ◽  
Y.C Lan ◽  
J.Y Li ◽  
Y.G Cao ◽  
M He

2015 ◽  
Vol 133 (2) ◽  
pp. 237-251 ◽  
Author(s):  
Wenzhi Wang ◽  
Xiaohong Liu ◽  
Xuemei Shao ◽  
Dahe Qin ◽  
Guobao Xu ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 899 ◽  
Author(s):  
Fan ◽  
Bräuning ◽  
Fu ◽  
Yang ◽  
Qi ◽  
...  

Intra-annual monitoring of tree growth dynamics is increasingly applied to disentangle growth-change relationships with local climate conditions. However, such studies are still very limited in subtropical regions which show a wide variety of climate regimes. We monitored stem radius variations (SRV) of Pinus kesiya var. langbianensis (Szemao pine) over five years (2012–2015 and 2017) in the subtropical monsoon mountain climate of the Ailao Mountains, Yunnan Province, southwest China. On average, the stem radial growth of Szemao pine started in early March and ended in early October, and the highest growth rates occurred during May to June. Stem radius increments were synchronous with precipitation events, while tree water deficit corresponded to the drought periods. Correlation analysis and linear mixed-effects models revealed that precipitation and relative humidity are the most important limiting factors of stem radial increments, whereas air temperature and vapor pressure deficit significantly affected tree water balance and may play an important role in determining the growing season length and seasonality (i.e., duration, start, and cessation). This study reveals that moisture availability plays a major role for tree growth of P. kesiya var langbianensis in the Ailao Mountains, southwest China.


IAWA Journal ◽  
2004 ◽  
Vol 25 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Cátia Henriques Callado ◽  
Sebastião José da Silva Neto ◽  
Fábio Rubio Scarano ◽  
Cecília Gonçalves Costa

We studied the annual radial growth of Tabebuia umbellata (Sond.) Sandwith (Bignoniaceae) and its relationship to rainfall, temperature, photoperiod, flooding and phenology. This species showed cyclic annual growth. Growth was the greatest during the rainy season and flooding. Growth was associated with the presence of mature leaves on the trees. No increase in girth was observed during the dry season or during defoliation or flowering. The mean rate of radial growth was c. 6 mm/year. This flood-tolerant species maintained and increased radial growth during flooding.


Sign in / Sign up

Export Citation Format

Share Document