Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China

2019 ◽  
Vol 39 (2) ◽  
Author(s):  
柯新利 KE Xinli ◽  
唐兰萍 TANG Lanping
Caldasia ◽  
2020 ◽  
Vol 43 (1) ◽  
pp. 186-196
Author(s):  
Juliana Muñoz-López ◽  
Juan Carlos Camargo-García ◽  
Catalina Romero-Ladino

Agriculture and urban expansion have caused fragmentation of the remaining forests located along the Otún and Consotá river watershed in the municipality of Pereira, Department of Risaralda, Colombia. These forests are dominated by the guadua bamboo species Guadua angustifolia Kunth, which provided raw material for different purposes and additionally fulfills important ecological functions. The aim of this study was to evaluate ecosystems services associated with these forests such as carbon storage, soil water storing capacity, and the financial feasibility related to guadua culms commercialization. The carbon storage was estimated from the aboveground biomass and soil organic matter; soil water storing capacity was associated with physical soil properties. Whereas the provisioning ecosystem service was assessed through a cost-benefit analysis performed with different production scenarios. The carbon stock was found to be 672.3 t C / ha (22 % in biomass and 78 % in the soil at a depth of 45 cm). The average soil water storing capacity was 292.4 m3 / ha. The cost-benefit analysis evidenced the financial feasibility for the scenarios when projected sales are more than 3 % than current. Bamboo forests provide ecosystem services that are yet another justification for better economic compensation and a medium to promote balance between ecosystem services and the financial situation of producers, who derive their incomes from its production.


2019 ◽  
Vol 53 (12) ◽  
pp. 6834-6844 ◽  
Author(s):  
Xiaoping Liu ◽  
Shaojian Wang ◽  
Peijun Wu ◽  
Kuishuang Feng ◽  
Klaus Hubacek ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 608
Author(s):  
Yang Chen ◽  
Wenze Yue ◽  
Xue Liu ◽  
Linlin Zhang ◽  
Ye’an Chen

There is growing concern about the consequences of future urban expansion on carbon storage as our planet experiences rapid urbanization. While an increasing body of literature was focused on quantifying the carbon storage impact of future urban expansion across the globe, rare attempts were made from the comparative perspective on the same scale, particularly in Central Asia. In this study, Central Asian capitals, namely Ashkhabad, Bishkek, Dushanbe, Nur Sultan, and Tashkent, were used as cases. According to the potential impacts of BRI (Belt and Road Initiative) on urban expansion, baseline development scenario (BDS), cropland protection scenario (CPS), and ecological protection scenario (EPS) were defined. We then simulated the carbon storage impacts of urban expansion from 2019 to 2029 by using Google Earth Engine, the Future Land Use Simulation model, and the Integrated Valuation of Environmental Services and Tradeoffs model. We further explored the drivers for carbon storage impacts of future urban expansion in five capitals. The results reveal that Nur Sultan will experience carbon storage growth from 2019 to 2029 under all scenarios, while Ashkhabad, Bishkek, Dushanbe, and Tashkent will show a decreasing tendency. EPS and CPS will preserve the most carbon storage for Nur Sultan and the other four cities, respectively. The negative impact of future urban expansion on carbon storage will be evident in Ashkhabad, Bishkek, Dushanbe, and Tashkent, which will be relatively inapparent in Nur Sultan. The potential drivers for carbon storage consequences of future urban expansion include agricultural development in Bishkek, Dushanbe, and Tashkent, desert city development in Ashkhabad, and prioritized development of the central city and green development in Nur Sultan. We suggest that future urban development strategies for five capitals should be on the basis of differentiated characteristics and drivers for the carbon storage impacts of future urban expansion.


2021 ◽  
Author(s):  
Zhuo Wang ◽  
Jie Zeng ◽  
Wanxu Chen

Abstract Carbon storage in terrestrial ecosystems, which is the basis of the global carbon cycle, reflects the changes in the environment due to anthropogenic impacts. Rapid and effective assessment of the impact of urban expansion on carbon reserves is vital for the sustainable development of urban ecosystems. Previous studies lack research regarding different scenarios during future city and comprehensive analysis on the driving factors from the socioeconomic point of view. Therefore, this study examined Wuhan, China and explored the latent effects of urban expansion on terrestrial carbon storage by combining the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and Patch-generating Land Use Simulation (PLUS) model. Based on different socioeconomic strategies, we developed three future scenarios, including Baseline Scenario (BS), Cropland Protection Scenario (CP), and Ecological protection Scenario (EP), to predict the urban built-up land use change from 2015 to 2035 in Wuhan and discussed the carbon storage impacts of urban expansion. The result shows that: (1) Wuhan's urban built-up land area expanded 2.67 times between 1980 and 2015, which is approximately 685.17 km2 and is expected to continuously expand to 1,349–1,945.01 km2 by 2035. (2) Urban expansion in Wuhan has caused carbon storage loss by 5.12×106 t during 1980–2015 and will lead to carbon storage loss by 6.15×106 t, 4.7×106 t, and 4.05×106 t under BS, CP, and EP scenarios from 2015 to 2035, accounting for 85.42%, 81.74%, and 78.79% of the total carbon loss, respectively. (3) The occupation of cropland by urban expansion is closely related to the road system expansion, which is the main driver of carbon storage reduction from 2015 to 2035. (4) We expect that by 2035, the districts facing carbon loss caused by the growth of urban built-up land will expand outward around secondary roads, and the scale of outward expansion under various scenarios will be ranked as: BS >CP > EP. In combination, the InVEST and the PLUS model can assess the impact of urban expansion on carbon storage more efficiently and is conducive to carrying out urban planning and promoting a dynamic balance between urban economic development and human well-being.


2020 ◽  
Author(s):  
Lanping Tang ◽  
Xinli Ke

<p>Urban expansion encroaches on natural habitat, which seriously affects carbon storage which plays an important role in global climate change. The projection of future effects of urban expansion on carbon storage have been the subject of attention, previous studies explored its direct impacts but ignored indirect effects: cropland loss caused by urban expansion needs to compensation from natural habitat for food security, which also affects carbon storage. China, as a populated country, is at an important stage of cropland conservation policies reform, rapid urbanization, and constructing of eco-civilization. In this case, it’s vital to figure out the change of carbon storage due to the direct and indirect impacts of urban expansion in the future. Taking Hubei as the study area, the aim of this study is to project both direct impacts (DI) and indirect impacts (II) of urban expansion on carbon storage during 2010–2030. Three scenarios are developed by integrating the current situation and policies: the scenarios where urban continues to expand and the cropland conservation policies are implemented with the priority to cropland in quantity (S<sub>1</sub>), with the priority to cropland in quantity and quality (S<sub>2</sub>), with the priority to cropland in quantity and quality, and ecological protection is also concerned (S<sub>3</sub>). Results show that, the total loss of carbon storage caused by urban expansion will be 1.83Tg•C (DI: 0.95Tg•C; II:0.88Tg•C) under the S<sub>1</sub> scenario, will be 2.15Tg•C (DI: 1.46Tg•C; II:0.69Tg•C) under the S<sub>2</sub> scenario, and will be 1.49Tg•C (DI: 0.94Tg•C; II: 0.55Tg•C) under the S<sub>3</sub> scenario. This indicates that ignoring the indirect impacts of urban expansion on carbon storage will lead to the underestimation of real impacts of urban expansion with 48%, 32%, and 63%, respectively. This study highlights the importance of taking the carbon storage loss caused by the indirect impacts of urban expansion into consideration.</p>


Sign in / Sign up

Export Citation Format

Share Document