Effects of throughfall reduction and nitrogen addition on stoichiometry of leaf and fine root in Phyllostachys edulis forests

2021 ◽  
Vol 41 (4) ◽  
Author(s):  
高小敏,刘世荣,王一,栾军伟,蔡春菊,任立宁 GAO Xiaomin
2020 ◽  
Author(s):  
Yi Wang ◽  
Shirong Liu ◽  
Junwei Luan

<p>The roles of multiple global change are expected for many terrestrial ecosystems in future. As two main global change factors, the impact of drought and nitrogen deposition and their interaction on soil respiration and its components (R) remains unclear. To explore the responses of soil respiration (R<sub>s</sub>), autotrophic respiration (R<sub>a</sub>) and heterotrophic respiration (R<sub>h</sub>) to multiple global change factors, we established a field experiment of throughfall reduction and nitrogen additions in a subtropical Moso bamboo (<em>Phyllostachys heterocycla</em>) forest in the Southwest China, using a 4 × 4 completely randomized design. Results showed that bivariate exponential equation with soil temperature (T) and soil moisture (SWC) (R=a.e<sup>bT</sup>.SWC<sup>c</sup>) was fitted to predict R<sub>s</sub>, R<sub>a</sub> and R<sub>h</sub>. Throughfall reduction, nitrogen additions and their interaction had no effect on annual mean R<sub>s</sub> and R<sub>a</sub>, but nitrogen additions significantly depressed annual mean R<sub>h</sub>. Nitrogen additions significantly decreased contribution of R<sub>h</sub> to R<sub>s</sub> and increased contribution of R<sub>a</sub> to R<sub>s</sub>, however, the contributions were non-responsive under throughfall reduction. The more positive effect of nitrogen additions on the contribution of R<sub>a</sub> to R<sub>s</sub> was appeared compared with that of throughfall reduction, thereby more negative effect on the contribution of R<sub>h</sub> to R<sub>s</sub>. The fine root biomass, fine root carbon and nitrogen storage regulated R<sub>s</sub>, while fine root phosphorus storage determined R<sub>a</sub>. The R<sub>h</sub> was negatively correlated with vector lengths, thus suggesting that microbial carbon limitation caused the decline of R<sub>h</sub>. Our findings demonstrate that the nitrogen additions played overriding role than throughfall reduction in affecting the contribution of R<sub>a</sub> and R<sub>h</sub> to R<sub>s</sub>. Moreover, the negative response of temperature sensitivity of R<sub>s</sub> and R<sub>h</sub> to nitrogen additions, suggesting that that the nitrogen additions may weaken the positive response of soil CO<sub>2</sub> emission to global climate warming. Our study highlights asymmetrical responses of R<sub>s</sub>, R<sub>a</sub> and R<sub>h </sub>to throughfall reduction and nitrogen additions and could enhance accurate predictions of soil carbon dynamics in response to multiple global climate change in future.</p>


2020 ◽  
Vol 458 ◽  
pp. 117793 ◽  
Author(s):  
Decheng Xiong ◽  
Jinxue Huang ◽  
Zhijie Yang ◽  
Yingying Cai ◽  
Teng-Chiu Lin ◽  
...  

2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Mehrcedeh Tafazoli ◽  
Seyed Mohammad Hojjati ◽  
Hamid Jalilvand ◽  
Norbert Lamersdorf ◽  
Mahya Tafazoli

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8194 ◽  
Author(s):  
Lu Gong ◽  
Jingjing Zhao

Fine roots are essential for water and nutrient uptake in plants, but little is known about the variation in fine root traits and the underlying mechanisms that drive it. Understanding the responses of fine root function traits to changing environmental conditions and the role of fine root traits as drivers of forest ecosystem processes are critical for informing physiological and ecological theory as well as ecosystem management. We measured morphological and physiological traits of fine roots from six soil layers and three diameter classes in Schrenk’s spruce (Picea shrenkiana) forests of the Tianshan mountains, China. We found significant effects of nitrogen addition on these morphological and physiological traits, which varied by soil layer and root diameter. Specifically, specific root length (SRL) was higher in medium N addition group (N2) than in control group (N0). Specific root area (SRA) was higher in the control group (N0) than fertilized groups (N1, N2 and N3). Root tissue density (RTD) was higher in low N addition group (N1) than in the other group. Root dry matter content had no significant difference among four treatment groups. SRL, SRA, and RTD of fine roots in different diameter classes were all significantly different between high N addition (N3) and the control (N0) groups. The physiological characteristics of fine roots showed that soluble sugar (SS), fine root vitality (FRV), and tissue water content (TWC) in different soil layers were higher in the control group than in the fertilized groups. While soluble protein (SP), malondialdehyde (MDA) and free proline (FP) were lower in the control group (N0) than in the fertilized groups. In addition, SS, FRV, SP, TWC, FP, and MDA in all N addition treatments groups were significantly different from the control group. Fine root morphological traits were closely related to physiological traits, and added nitrogen inputs change these correlations. Our study confirms that nitrogen addition has specific effects on the morphological and physiological traits of fine roots of Schrenk’s spruce, and the effects of N addition vary according to the amount added.


Sign in / Sign up

Export Citation Format

Share Document