throughfall reduction
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 503 ◽  
pp. 119766
Author(s):  
Roger Chambi-Legoas ◽  
Mario Tomazello-Filho ◽  
Fernanda Trisltz Perassolo Guedes ◽  
Gilles Chaix

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Yubiao Lin ◽  
Jiejun Kong ◽  
Ling Yang ◽  
Qian He ◽  
Yan Su ◽  
...  

In subtropical plantations in southern China, how soil microbial communities respond to climate change-induced drought is poorly understood. A field experiment was conducted in a subtropical Eucalyptus plantation to determine the impacts of 50% of throughfall reduction (TR) on soil microbial community composition, function, and soil physicochemical properties. Results showed that TR reduced soil water content (SWC) and soil available phosphorus (AP) content. TR significantly altered 196 bacterial operational taxonomic units (OTUs), most of them belonging to Acidobacteria, Actinobacteria, and Proteobacteria, while there were fewer changes in fungal OTUs. At the phylum level, TR increased the relative abundance of Acidobacteria at 0–20 cm soil depth by 37.18%, but failed to influence the relative abundance of the fungal phylum. Notably, TR did not alter the alpha diversity of the bacterial and fungal communities. The redundancy analysis showed that the bacterial communities were significantly correlated with SWC, and fungal communities were significantly correlated with AP content. According to predictions of bacterial and fungal community functions using PICRUSt2 and FUNGuild platforms, TR had different effects on both bacterial and fungal communities. Overall, SWC and AP decreased during TR, resulting in greater changes in soil bacterial community structure, but did not dramatically change soil fungal community structure.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Abstract Background There are many studies on disentangling the responses of autotrophic (AR) and heterotrophic (HR) respiration components of soil respiration (SR) to long-term drought, but few studies have focused on the mechanisms underlying its responses. Methods To explore the impact of prolonged drought on AR and HR, we conducted the 2-year measurements on soil CO2 effluxes in the 7th and 8th year of manipulated throughfall reduction (TFR) in a warm-temperate oak forest. Results Our results showed long-term TFR decreased HR, which was positively related to bacterial richness. More importantly, some bacterial taxa such as Novosphingobium and norank Acidimicrobiia, and fungal Leptobacillium were identified as major drivers of HR. In contrast, long-term TFR increased AR due to the increased fine root biomass and production. The increased AR accompanied by decreased HR appeared to counteract each other, and subsequently resulted in the unchanged SR under the TFR. Conclusions Our study shows that HR and AR respond in the opposite directions to long-term TFR. Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR. This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO2 effluxes under future droughts.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 724
Author(s):  
Yi Wang ◽  
Shirong Liu ◽  
Junwei Luan ◽  
Chen Chen ◽  
Chunju Cai ◽  
...  

Impacts of drought events and nitrogen (N) deposition on forests are increasingly concerning in the context of global climate change, but their effects, in particular, their interactive effects on soil respiration and its components remain unclear. A two-factor random block field experiment was conducted at a subtropical Moso bamboo forest in Southwest China to explore the response of soil respiration (Rs), autotrophic respiration (Ra), and heterotrophic respiration (Rh) to throughfall re-duction and N addition. Our results showed that throughfall reduction significantly decreased Rs, which is mainly attributed to the decrease in Ra as a result of the decline in fine roots biomass. The N addition led to microbial carbon limitation hence significantly decreased Rh, and thus Rs. We also observed the negative effect of throughfall reduction on Rs was exacerbated by N addition, which is attributed to the significant reduction in Ra under the interaction between throughfall reduction N addition. Our findings suggest that Ra tended to respond more sensitively to potential drought, while Rh responds more sensitively to N deposition, and consequently, increased soil N availability caused by N deposition might aggravate the negative effect of expected drought on soil carbon cycling.


2021 ◽  
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Abstract Background: There are many studies on disentangling the responses of autotrophic (AR) and heterotrophic (HR) respiration components of soil respiration (SR) to long-term drought, but few studies have focused on the mechanisms underlying its responses.Methods: To explore the impact of prolonged drought on AR and HR, We conducted the 2-year measurements on soil CO2 effluxes in the 7th and 8th year of manipulated throughfall reduction (TFR) in a warm-temperate oak forest. Results: Our results showed long-term TFR decreased HR, which was positively related to bacterial richness. More importantly, some bacterial taxa such as Novosphingobium and norank Acidimicrobiia, and fungal Leptobacillium were identified as major drivers of HR. In contrast, long-term TFR increased AR due to the increased fine root biomass and production. The increased AR accompanied by decreased HR appeared to counteract each other, and subsequently resulted in the unchanged SR under the TFR. Conclusions: Our study shows that HR and AR respond in the opposite directions to long-term TFR. Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR. This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO2 effluxes under future droughts.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 165
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Prolonged drought results in serious ecological consequences in forest ecosystems, particularly for soil microbial communities. However, much is unknown about soil microbial communities in their response to long-term consecutive droughts in warm-temperate forests. Here, we conducted a 7-year manipulated throughfall reduction experiment (TFR) to examine the responses of bacterial and fungal communities in terms of richness and networks. Our results show that long-term TFR reduced bacterial, but not fungal, richness, with rare bacterial taxa being more sensitive to TFR than dominant taxa. The bacterial network under the TFR treatment featured a simpler network structure and fewer competitive links compared to the control, implying weakened interactions among bacterial species. Bacterial genes involved in xenobiotic biodegradation and metabolism, and lignin-degrading enzymes were enhanced under TFR treatment, which may be attributed to TFR-induced increases in fine root biomass and turnover. Our results indicate that soil bacterial communities are more responsive than fungi to long-term TFR in a warm-temperate oak forest, leading to potential consequences such as the degradation of recalcitrant organics in soil.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1371
Author(s):  
Carola Pritzkow ◽  
Christopher Szota ◽  
Virginia G. Williamson ◽  
Stefan K. Arndt

Long-term studies of tree responses to drought stress help us to understand the capacity of species to adapt to their environment. In this study, we investigated how Eucalyptus obliqua adjusts physiological and morphological traits in response to seasonal and multi-year droughts. We monitored physiological and morphological traits over multiple years in undisturbed control and throughfall reduction plots in a eucalypt forest in south-eastern Australia. The throughfall reduction treatment did not induce significantly lower soil moisture in the throughfall reduction plots compared with the control plots. However, natural variability in precipitation and evaporative demand induced drought stress of varying intensity each summer in all plots. We observed a significant relationship between seasonal precipitation and leaf pre-dawn water potential (ΨPD), with less precipitation over summer, resulting in a decline in ΨPD and drought stress when ΨPD fell below −0.75 MPa. Eucalyptus obliqua responded to short-term summer drought through rapid leaf osmotic adjustment which lowered the leaf water potential at the turgor loss point beyond the minimum leaf water potential. Morphological adjustments, such as the reduction of leaf area to sapwood area (higher Huber Value) were moderate during the measurement period and only occurred under severe drought stress (pre-dawn water potential < −1.2 MPa). Overall, E. obliqua responded to short-term mild drought stress through physiological trait plasticity, while morphological adjustment only occurred under a more severe water deficit.


2020 ◽  
Vol 261 ◽  
pp. 114090 ◽  
Author(s):  
Shicong Geng ◽  
Zhijie Chen ◽  
Shanshan Ma ◽  
Yue Feng ◽  
Lei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document