scholarly journals Herbicide Concentrations in First-Order Streams after Routine Application for Competition Control in Establishing Pine Plantations

2015 ◽  
Vol 61 (3) ◽  
pp. 604-612 ◽  
Author(s):  
S. Lynsey Scarbrough ◽  
C. Rhett Jackson ◽  
Samantha Marchman ◽  
Ginny Allen ◽  
Jeff Louch ◽  
...  
1989 ◽  
Vol 13 (3) ◽  
pp. 107-112 ◽  
Author(s):  
James L. Smith ◽  
Shepard M. Zedaker ◽  
Richard C. Heer

Abstract A prediction system was developed that estimated pine density and hardwood competition levels in young plantations using simple measurements made on 35mm aerial photographs. The precision of the prediction system was found to be moderate to good. The use of these photo-based modelsin a decision-making situation was examined. Ground-based decisions regarding replanting, spraying for competition control, or no treatment were compared to similar decisions reached strictly from the aerial photographic measurements. Approximately 80% of all decisions agreed, and 90% of theno-treatment decisions agreed. While aerial photographs do not totally eliminate the need for field work, it is clear that photographic information can often produce reliable decisions with reduced field efforts. South. J. Appl. For. 13(3):107-112.


2003 ◽  
Vol 27 (1) ◽  
pp. 55-60 ◽  
Author(s):  
P.D. Keyser ◽  
V.L. Ford ◽  
D.C. Guynn

Abstract Wildlife biologists have become increasingly concerned about the effects of herbaceous competition control in pine plantations on wildlife habitats. Data from a study designed to test the effectiveness of herbaceous weed control with different site preparation methods were re-analyzed to assess effects on various measures of wildlife habitat quality. Three rates of Oust® (0, 2, and 4 oz/ac) were applied in mid-April the first year to planted loblolly pine seedlings at seven locations (each a complete randomized block design) in the Virginia Piedmont. Site preparation methods used were pile only (two locations), burn only, chop and burn, pile and disk, and Velpar® and burn (two locations). Results were re-analyzed to assess effects of these methods on total herbaceous vegetation coverage, forage coverage, the ratio of forage/cover, species richness, and species diversity. Although total herbaceous coverage and species richness declined in the first year after application on many locations, vegetation rebounded in the second and/or third year. Few significant differences were observed in forage coverage, the ratio of forage to cover, or species diversity. By the third year, few differences remained among treatment levels. Mechanical site preparation appeared to have less impact on all measures than chemical site preparation. South. J. Appl. For. 27(1):55–60.


2021 ◽  
Author(s):  
Andrew Trlica ◽  
Rachel L Cook ◽  
Timothy J Albaugh ◽  
Rajan Parajuli ◽  
David R Carter ◽  
...  

Abstract Rising demand for renewable energy has created a potential market for biomass from short-rotation pine plantations in the southeastern United States. Site preparation, competition control, fertilization, and enhanced seedling genotypes offer the landowner several variables for managing productivity, but their combined effects on financial returns are unclear. This study estimated returns from a hypothetical 10-year biomass harvest in loblolly pine plantation using field studies in the Coastal Plain of North Carolina and the Virginia Piedmont testing combinations of tree genotype, planting density, and silviculture. Although enhanced varietal genotypes could yield more biomass, open-pollinated seedlings at 1,236–1,853 trees ha−1 under operational silviculture had the greatest returns at both sites, with mean whole-tree internal rates of return of 8.3%–9.9% assuming stumpage equal to current pulpwood prices. At a 5% discount rate, break-even whole-tree stumpage at the two sites in the optimal treatments was $8.72–$9.92 Mg−1, and break-even yield was 175–177 Mg ha−1 (roughly 18 Mg ha−1 yr−1 productivity), although stumpage and yield floors were higher if only stem biomass was treated as salable. Dedicated short-rotation loblolly biomass plantations in the region are more likely to be financially attractive when site establishment and maintenance costs are minimized. Study Implications: Our study suggests that dedicated loblolly pine plantations in the US Southeast may be managed to generate positive financial yields for biomass over relatively short (10 year) rotation windows, even at lower stumpage value than at present for pulpwood in the region (<80% current). Intensive use of costly inputs like fertilizer, vigorous chemical competition control, and elite genetics in planting stock did improve biomass yields. However, the management combinations that favored the highest financial returns emphasized the least expensive open-pollinated stock, lower-input operational silviculture, and moderate-to-high planting density.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document