scholarly journals Detection and identification of bacterial soft rot of potato Pectobacterium carotovorum subsp. carotovorum using specific PCR primers in Jordan

2017 ◽  
Vol 12 (39) ◽  
pp. 2910-2918 ◽  
Author(s):  
Ibtihal Abu-Obeid ◽  
Khlaif Hamed ◽  
Salem Nida
Plant Disease ◽  
2017 ◽  
Vol 101 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Xianglong Meng ◽  
Ali Chai ◽  
Yanxia Shi ◽  
Xuewen Xie ◽  
Zhanhong Ma ◽  
...  

During 2014 to 2015, a devastating bacterial soft rot on cucumber stems and leaves occurred in Shandong, Shanxi, Hebei, Henan, and Liaoning provinces of China, resulting in serious economic losses for cucumber production. The gummosis emerged on the surface of leaves, stems, petioles, and fruit of cucumber. The basal stem color was dark brown and the stem base turned to wet rot. Yellow spots and wet rot emerged at the edge of the infected cucumber leaves and gradually infected the leaf centers. In total, 45 bacterial strains were isolated from the infected tissues. On the basis of phenotypic properties of morphology, physiology, biochemistry, and 16S ribosomal RNA gene sequence analysis, the pathogen was identified as Pectobacterium carotovorum. Multilocus sequence analysis confirmed that the isolates were P. carotovorum subsp. brasiliense, and the pathogens fell in clade II. The pathogenicity of isolated bacteria strains was confirmed. The strains reisolated were the same as the original. The host range test confirmed that strains had a wide range of hosts. As far as we know, this is the first report of cucumber stem soft rot caused by P. carotovorum subsp. brasiliense in China as well as in the world, which has a significant economic impact on cucumber production.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2468-2468 ◽  
Author(s):  
S. B. Jiang ◽  
B. R. Lin ◽  
Q. Y. Yang ◽  
J. X. Zhang ◽  
H. F. Shen ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
Author(s):  
Tri Joko ◽  
ALAN SOFFAN ◽  
MUHAMMAD SAIFUR ROHMAN

Abstract. Joko T, Soffan A, Muhammad Saifur Rohman MS. 2019. A novel subspecies-specific primer targeting the gyrase B gene for the detection of Pectobacterium carotovorum subsp. brasiliense. Biodiversitas 20: 3042-3048. Pectobacterium carotovorum subsp. brasiliense is one of the major causative bacterial pathogens of the soft rot disease in various crops. It has a high virulence and a wide range of hosts in the tropics and the subtropics. Most often, conventional methods are not able to accurately distinguish P. carotovorum subsp. brasiliense from other subspecies. Thus, this study aimed to design a specific gyrase B gene (gyrB) -based primers for the detection and identification of soft rot pathogen. The specific primers design was based on the alignment using gyrB gene sequence data from P. carotovorum subsp. brasiliense and other data from the GenBank. The primers comprised of F-gyr-Pcb (5’-CAC AGG CAC CGC TGG CTG TT-3’) and R-gyr-Pcb (5’-CGT CGT TCC ACT GCA ATG CCA-3’) with an amplicon of 336 base pairs. The specificity of the primers pair was verified both in silico and in polymerase chain reaction (PCR) assays, where the primers could only detect P. carotovorum subsp. brasiliense. Primers’ sensitivity was determined by qualitative PCR with a detection limit of less than 0.5 ng/µL of genomic DNA. Hence, the proposed detection tool can be beneficial to advance further studies on the ecology and epidemiology of soft rot diseases.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1819-1819 ◽  
Author(s):  
J. X. Zhang ◽  
B. R. Lin ◽  
H. F. Shen ◽  
X. M. Pu ◽  
Z. N. Chen ◽  
...  

Potato (Solanum tuberosum L.) is a major crop in China, with 80.0 million tons being produced in 2010 on 3.3 million ha. Pectobacterium carotovorum subsp. carotovorum Jones 1901; Hauben et al. 1999 causes soft rot worldwide on a wide range of hosts including potato, carrot, and cabbage. During spring 2010, a soft rot with a foul smell was noted in stored potato tubers of different cultivars in the Guangdong Province. Symptoms on tubers appeared as tan, water-soaked areas with watery ooze. The rotted tissues were white to cream colored. Stems of infected plants with typical inky black symptoms could also be found in the fields prior to harvest. Three different potato fields were surveyed, and 13% of the plants had the symptoms. Twenty-seven samples (three symptomatic tubers per sample) were collected. Bacteria were successfully isolated from all diseased tissues on nutrient agar media supplemented with 5% sucrose and incubated at 26 ± 1°C for 36 h. After purification on tripticase soy agar media, four typical strains (7-3-1, 7-3-2, 8-3-1, and 8-3-2) were identified using the following deterministic tests: gram-negative rods, oxidase negative, facultatively anaerobic, able to degrade pectate, sensitive to erythromycin, negative for phosphatase, unable to produce acid from α-methyl-glucoside, and produced acid from trehalose. Biolog analysis (Ver 4.20.05, Hayward, CA) identified the strains as P. carotovorum subsp. carotovorum (SIM 0.808, 0.774, 0.782, and 0.786, respectively). The identity of strains 7-3-1 (GenBank Accession No. JX258132), 7-3-2 (JX258133), and 8-3-1 (JX196705) was confirmed by 16S rRNA gene sequencing (4), since they had 99% sequence identity with other P. carotovorum subsp. carotovorum strains (GenBank Accession Nos. JF926744 and JF926758) using BLASTn. Further genetic analysis of strain 8-3-1 was performed targeting informative housekeeping genes, i.e., acnA (GenBank Accession No. JX196704), gabA (JX196706), icdA (JX196707), mdh (JX196708), mtlD (JX196709), pgi (JX196710), and proA (JX196711) (2). These sequences from strain 8-3-1 were 99 to 100%, homologous to sequences of multiple strains of P. carotovorum subsp. carotovorum. Therefore, strain 8-3-1 grouped with P. carotovorum subsp. carotovorum on the phylogenetic trees (neighbor-joining method, 1,000 bootstrap values) of seven concatenated housekeeping genes when compared with 60 other strains, including Pectobacterium spp. and Dickeya spp. (3). Pathogenicity of four strains (7-3-1, 7-3-2, 8-3-1, and 8-3-2) was evaluated by depositing a bacterial suspension (106 CFU/ml) on the potato slices of cultivar ‘Favorita’ and incubating at 30 ± 1°C. Slices inoculated with just water served as non-inoculated checks. The strains caused soft rot within 72 h and the checks had no rot. Bacteria were reisolated from the slices and were shown to be identical to the original strains based on morphological, cultural, and biochemical tests. Although this pathogen has already been reported in northern China (1), to our knowledge, this is the first report of P. carotovorum subsp. carotovorum causing bacterial soft rot of potato in Guangdong Province of China. References: (1) Y. X. Fei et al. J. Hexi Univ. 26:51, 2010.(2) B. Ma et al. Phytobacteriology 97:1150, 2007. (3) S. Nabhan et al. Plant Pathol. 61:498, 2012. (4) W. G. Weisbury et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1158-1166 ◽  
Author(s):  
Xiaoying Li ◽  
Lu Fu ◽  
Changlong Chen ◽  
Wangwang Sun ◽  
Yu Tian ◽  
...  

Pectobacterium carotovorum, a causal agent of vegetable soft rot, contains three valid subspecies: P. carotovorum subsp. carotovorum (Pcc), P. carotovorum subsp. brasiliensis (Pcb), and P. carotovorum subsp. odoriferum (Pco). Using 16S rDNA sequencing and genus-specific PCR, we identified 72 P. carotovorum strains from Chinese cabbage, bok choy, and celery and assessed their pathogenicity on Chinese cabbage petioles and potato tubers. Based on phylogenetic analysis of pmrA sequences and confirmation by subspecies-specific PCR, the strains were divided into 18 Pcc, 29 Pco, and 25 Pcb. Several characteristic features were also assessed and supported the distinctiveness of the Pco strains. All P. carotovorum strains caused soft rot symptoms on Chinese cabbage and potato, but the Pco strains exhibited the greatest severity. We developed a conventional PCR and a quantitative PCR (qPCR) assay for the identification of Pco based on its specific srlE gene encoding sorbitol-specific phosphotransferase. These two methods could specifically amplify the expected products of 674 and 108 bp, respectively, from all of the Pco strains. The assays demonstrated high sensitivity and could detect as little as 1 and 100 pg/µl of bacterial genomic DNA, respectively. Both assays could also detect the pathogens directly from plant tissues infected with as little as 2.5 × 10−2 CFU/mg of Pco, even before external symptoms appeared. These assays constitute effective tools for disease diagnosis and the rapid identification of soft rot pathogens.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1152-1152 ◽  
Author(s):  
J. Gao ◽  
N. Nan ◽  
B. H. Lu ◽  
Y. N. Liu ◽  
X. Y. Wu ◽  
...  

Milk thistle (Silybum marianum) is an annual or biannual plant of the Asteraceae family that produces the hepaprotectant silymarin. In 2012, almost all milk thistle grown in the medicinal herbal garden of Jilin Agricultural University (Changchun, Jilin Province, China) exhibited symptoms of a previously undetected soft rot disease. Initial symptoms on stems appeared as tan, semitransparent, and water-soaked, then became sunken. The rotted lesions expanded rapidly and inner stem tissues were rotten with a foul smell. Eventually, the whole plant became black, then collapsed and died. Economic losses were significant as the seed crop was almost completely lost. Nine bacterial strains were isolated from tissues on nutrient agar (NA) medium after 36 h incubation at 28°C (1). Colonies of the nine strains were round, shiny, grayish white, and convex on NA medium. All strains were gram-negative, non-fluorescent, facultatively anaerobic, motile with two to four peritrichous flagella (observed by electron transmission microscope), positive for catalase and potato rot, but negative for oxidase and lecithinase. Strains grew at 37°C and in yeast salts broth medium containing 5% NaCl. They also liquefied gelatin. Strains were also negative for starch hydrolysis, malonate utilization, gas production from glucose, and indole. Results were variable for the Voges-Proskauer test and production of H2S from cysteine. The strains utilized esculin, fructose, D-galactose, D-glucose, inositol, lactose, D-mannose, D-mannitol, melibiose, rhamnose, salicin, trehalose, D-xylose, and cellobiose as carbon sources, but not melezitose, α-CH3-D-gluconate, sorbitol, or starch. Glycerol and maltose were only weakly utilized. Species identity was confirmed by molecular analysis of one of the strains, SMG-2. HPLC indicated a DNA GC content of 50.55%. The 16S rDNA sequence (KC207898) of SMG-2 showed 99% sequence identity to that of a Pectobacterium carotovorum subsp. carotovorum strain (DQ333384) and the sequence of the 16S-23S rDNA spacer region (KJ415377) was 95% similar to that of another known strain of P. carotovorum subsp. carotovorum (AF232684). Based on biochemical and physiological characteristics (2), as well as 16S rDNA gene analysis, the strains were identified as P. carotovorum subsp. carotovorum. Pathogenicity of the nine strains was evaluated by depositing a bacterial suspension (108 CFU/ml) on wounded stems (made with a disinfected razor blade) of 3-month-old milk thistle plants. Three plants were inoculated with each strain and three plants were treated with sterilized water as negative controls. Inoculated plants were covered with plastic bags for 24 h in a greenhouse at 28 to 30°C. After 48 h, the plants inoculated with bacteria showed similar symptoms as the naturally infected plants, while control plants remained symptomless. The symptoms observed on inoculated stems were rotten and sunken tissues. Bacteria were re-isolated from the inoculated plants and confirmed to be identical to the original strains based on 16S rDNA sequence analysis. To our knowledge, this is the first report of P. carotovorum subsp. carotovorum causing bacterial soft rot of milk thistle in Changchun, Jilin Province, China. References: (1) Z. D. Fang. Research Method of Phytopathology. China Agricultural Press (In Chinese), 1998. (2) N. W. Schaad et al., eds. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. American Phytopathological Society, St. Paul, MN, 2001.


2018 ◽  
Vol 45 (11) ◽  
pp. 1119 ◽  
Author(s):  
Marilyn S. Sumayo ◽  
Jin-Soo Son ◽  
Sa-Youl Ghim

Phenylacetic acid (PAA) was evaluated for its capability to promote plant growth and induce systemic resistance in tobacco (Nicotianum tabacum L cv. Xanthi) against the bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum (PCC). Exogenous application of PAA influenced root formation, the activities of defence-related enzymes and the expression of defence and growth-related genes. Increased formation of lateral roots can be observed in tobacco treated with higher PAA concentrations. The highest elicitation of induced systemic resistance (ISR) was found in plants treated with 0.5 mM PAA, where the phytotoxic effect was minimal. The activities of the defence enzymes phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphnenoloxidase (PPO) were modulated upon treatment with different PAA concentrations. Reverse transcription–PCR analyses showed that 0.5 mM PAA modulated the expression of the growth-related genes NtEXP2 and NtEXP6, and the defence-related genes Coi1, NPR1, PR-1a and PR-1b. These results showed that different concentrations of PAA can elicit different responses and effects on tobacco growth and resistance. This study presents the important role of PAA not only on plant growth but also for plant immunity against phytopathogens.


Plant Disease ◽  
2015 ◽  
Vol 99 (8) ◽  
pp. 1175 ◽  
Author(s):  
Y. Tian ◽  
Y. Zhao ◽  
H. Xie ◽  
X. Wang ◽  
J. Fan ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1268-1268 ◽  
Author(s):  
J. Gao ◽  
N. Nan ◽  
Y. N. Liu ◽  
B. H. Lu ◽  
W. Y. Xia ◽  
...  

Horn lian (Typhonium giganteum) is a perennial herb of the family Aracea and is commonly used for expelling phlegm and as an antispasmodic treatment. In August 2012, horn lian grown in Changchun, Jilin Province of China, exhibited soft rot disease with ~60% incidence and experienced great losses. Water-soaked and dark green lesions on leaves expanded along main veins. Semitransparent, water-soaked, and sunken lesions on stems expanded rapidly and caused the whole plant to collapse with a foul smell. Nine representative strains were isolated from infected leaves and stems on nutrient agar (NA) medium after 36 h incubation at 28°C (1). Colonies were round, shiny, grayish white, and convex on NA medium. All strains were gram-negative, non-fluorescent on King's B medium (KB), facultatively anaerobic, motile with three to six peritrichous flagella (observed by electron transmission microscope), positive for catalase and pectolytic activity test on potato slices, but negative for oxidase, urease, and lecithinase. Strains grew at 37°C and in yeast salts broth medium containing 5% NaCl. They also liquefied gelatin and reduced nitrate, but did not reduce sucrose. Strains were also negative for starch hydrolysis, malonate utilization, gas production from glucose and indole. Results were variable for the Voges-Proskauer test. The strains utilized sucrose, arabinose, fructose, D-galactose, D-glucose, inositol, lactose, D-mannose, D-mannitol, melibiose, rhamnose, salicin, trehalose, maltose, raffinose, glycerol, D-xylose, and cellobiose as carbon sources, but not melezitose, α-CH3-D-gluconate, sorbitol, or dulcitol. Species identity was confirmed by molecular characterization of one of the nine strains, DJL1-2. DNA GC content indicated by high performance liquid chromatography (HPLC) was 51.7%. The 16S rDNA sequence (KC07897) of DJL1-2 showed 99% identity to that of a Pectobacterium carotovorum subsp. carotovorum (Pcc) strain (CP001657) and the sequence of the 16S-23S rDNA spacer region (KJ623257) was 93% similar to that of another known strain of Pcc (CP003776). As a result, the strains were identified as Pcc (2). Pathogenicity of the nine strains was evaluated by spraying 1 ml of bacterial cell suspension (108 CFU/ml) onto healthy leaves and injecting 0.1 ml of cell suspension into stems of 3-year-old horn lian plants with a sterile pipette tip. Three seedlings were used for each strain and sterilized water served as negative controls. Pcc SMG-2 reference strain (from milk thistle) was also inoculated into horn lian leaves and stems. Inoculated plants were covered with plastic bags for 24 h in a greenhouse at 28 to 30°C. After 72 h, water-soaked lesions similar to the naturally infected plants were observed on leaves and stems inoculated by the nine isolated strains and Pcc SMG-2, while negative control plants remained symptomless. Biochemical tests and 16S rDNA sequence analysis confirmed that the re-isolated bacteria were Pcc. To our knowledge, this is the first report of Pcc causing bacterial soft rot of horn lian in Changchun, Jilin Province, China. References: (1) Z. D. Fang. Research Method of Phytopathology. China Agricultural Press, 1998. (2) N. W. Schaad, et al. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. American Phytopathological Society, St. Paul, MN, 2001.


Sign in / Sign up

Export Citation Format

Share Document