scholarly journals Organic amendments applied to a degraded soil: Short term effects on soil quality indicators

2019 ◽  
Vol 14 (4) ◽  
pp. 218-225 ◽  
Author(s):  
B. O. UNAGWU
Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 364
Author(s):  
Jason M. Lussier ◽  
Maja Krzic ◽  
Sean M. Smukler ◽  
Katarina R. Neufeld ◽  
Chantel J. Chizen ◽  
...  

Grassland set-asides (GLSA) are fields that are taken out of intensive annual crop production and seeded with a mixture of grasses and legumes for one to four years to improve soil quality. The objectives of this study were to evaluate (i) the relationships among soil organic carbon (SOC), permanganate oxidisable C (POXC), dilute-acid extractable polysaccharides (DAEP) and aggregate stability to determine if they may be used as proxies for one another, (ii) whether these indicators could be used to predict aggregate stability, (iii) if differences in soil quality after short-term GLSAs, detected with aggregate stability, could instead be detected with POXC or DAEP and (iv) potential use of diffuse Fourier transform spectroscopy (FT-MIR) to predict POXC, DAEP and aggregate stability in the Fraser River Delta region of British Columbia, Canada. There were strong relationships among SOC, POXC and DAEP, but the relationship between DAEP and SOC (R2 = 0.60, P < 0.0001) was less strong than that observed between POXC and SOC (R2 = 0.71, P < 0.0001). All three soil C fractions were significantly predicted with the 2–6 mm aggregate size fraction but the correlations for DAEP (R2 = 0.43) and POXC (R2 = 0.36) were stronger than that for SOC (R2 = 0.29). Predictions of soil quality indicators using FT-MIR produced R2 = 0.92 for POXC, R2 = 0.93 for DAEP and R2 = 0.62 for the 2–6 mm aggregate size fraction. These results suggest that FT-MIR holds promise as a low-cost method to determine labile soil C fractions that are better proxy soil quality indicators for aggregate stability than SOC.


2013 ◽  
Vol 13 (8) ◽  
pp. 1335-1350 ◽  
Author(s):  
Rong-Jiang Yao ◽  
Jing-Song Yang ◽  
Tong-Juan Zhang ◽  
Peng Gao ◽  
Shi-Peng Yu ◽  
...  

1999 ◽  
Vol 79 (1) ◽  
pp. 37-45 ◽  
Author(s):  
M. A. Bolinder ◽  
D. A. Angers ◽  
E. G. Gregorich ◽  
M. R. Carter

The response of soil quality attributes to management practices across a diverse range of farming systems is key to identifying a robust minimum data set (MDS). The objectives of this study were to compare the response and consistency of different soil organic matter (SOM) attributes to changes in soil management practices in eastern Canadian agroecosystems. Soil samples (0–10 cm) were obtained at sites of several replicated experiments throughout eastern Canada, and 16 paired comparisons were selected to determine the effect of conservation (no-tillage, rotations, organic amendments) versus conventional (fall moldboard plowing, continuous cropping, no organic amendments) management practices. A sensitivity index was calculated for each of the attributes by dividing the values for conservation treatments with their conventionally managed counterparts (i.e., Conservation/Conventional). The index showed that light fraction (LF) N (1.58) and macro-organic matter-N (MOM-N) (1.54) were the most sensitive SOM attributes to conservation management practices. Light fraction-C (LF-C), macro-organic matter-C (MOM-C) and microbial biomass-C (MB-C) also showed high sensitivity to conservation management (1.48, 1.34 and 1.44, respectively). The sensitivity index for carbohydrates, whole soil C and total N were 1.23, 1.16 and 1.17, respectively. However, the Friedman two-way analysis of variance test indicated that the sensitivity of the different attributes to conservation management was site specific. For example, although LF-N was highly ranked, it did not respond as frequently as most of the other attributes. A non-parametric sign test showed that whole soil C and N provided the most consistent response to conservation management. The average sensitivity index was highest for the amendment (1.82) followed by the tillage (1.26) and rotational (1.14) conservation management practices, suggesting that organic amendments had the greatest impact on most of the attributes. These results suggest that for eastern Canadian soils, use of MOM-C and MOM-N, MB-C and whole soil C would provide a useful, easy to measure and robust MDS. Key words: Soil quality indicators, response, conservation management


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 582
Author(s):  
Jerónimo Salinas ◽  
David Meca ◽  
Fernando del Moral

The short-term responses of soil quality indicators are important for assessing the effects of new management practices and addressing threats to crop yields in greenhouses. The aim of this study was to assess, during three consecutive cropping seasons, the effect of a sustainable management package (CRTMP)—which includes the on-site reuse of greenhouse crop residues and tillage—in comparison with conventional management, based on fertigation only (CMP), on certain biochemical soil quality indicators and crop yields. CRTMP significantly increased (p < 0.05) the values of total organic carbon (TOC), particulate organic carbon (POC), light fraction (LF), water soluble organic carbon (WSOC), and dehydrogenase (DH) and β-glucosidase (GL) activities at a depth of 0–15 cm, as well as the mean concentration of nitrates in the soil solution. In addition, a significant Pearson’s correlation (p < 0.01) found between the indicators suggested a balanced improvement of soil biological activity and nutritional soil state. Nonetheless, the significant (p < 0.05) increases in the mean concentration of chlorides in the soil solution and electrical conductivity (p < 0.05) increased the risk of salinization, which may have affected the concentration of nitrates in the petiole sap and total production in CRTMP, which were significantly lower than in CMP. Nevertheless, the proportion of premium product was significantly higher in CRTMP, while the proportion of non-commercial production decreased.


2015 ◽  
Vol 27 (3) ◽  
pp. 219-232
Author(s):  
Antônio W. O. Rocha Junior ◽  
Guilherme A. H. A. Loureiro ◽  
Quintino R. Araujo ◽  
George A. Sodré ◽  
Arlicélio Q. Paiva ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Melku Dagnachew ◽  
Awdenegest Moges ◽  
Asfaw Kebede ◽  
Adane Abebe

Land degradation is a global negative environmental process that causes the decline in the productivity of land resources’ capacity to perform their functions. Though soil and water conservation (SWC) technologies have been adopted in Geshy subcatchment, their effects on soil quality were limitedly studied. The study was conducted to evaluate the effects SWC measures on soil quality indicators in Geshy subcatchment, Gojeb River Catchment, Ethiopia. A total of 54 soil samples (two treatments–farmlands with and without SWC measures ∗ three slope classes ∗ three terrace positions ∗ three replications) were collected at a depth of 20 cm. Statistical differences in soil quality indicators were analyzed using multivariate analysis of variance (ANOVA) following the general linear model procedure of SPSS Version 20.0 for Windows. Means that exhibited significant differences were compared using Tukey’s honest significance difference at 5% probability level. The studied soils are characterized by low bulk density, slightly acidic with clay and clay loam texture. The results revealed that farmlands with SWC measures had significantly improved soil physical (silt and clay fractions, and volumetric soil water content (VSWC)) and chemical (pH, SOC, TN, C : N ratio, and Av. phosphorus) quality indicators as compared with farmlands without SWC measures. The significantly higher VSWC, clay, SOC, TN, C : N ratio, and Av. P at the bottom slope classes and terrace positions could be attributed to the erosion reduction and deposition effects of SWC measures. Generally, the status of the studied soils is low in SOC contents, TN, C : N ratio, and Av. P (deficient). Thus, integral use of both physical and biological SWC options and agronomic interventions would have paramount importance in improving soil quality for better agricultural production and productivity.


2009 ◽  
Vol 40 (1-6) ◽  
pp. 419-434 ◽  
Author(s):  
Evangelia Vavoulidou ◽  
Elisabeth Avramides ◽  
Martin Wood ◽  
Polykarpos Lolos

Sign in / Sign up

Export Citation Format

Share Document