scholarly journals Use of organic amendments in table grape: effect on plant root system and soil quality indicators

Author(s):  
M. Mercedes Martínez ◽  
Rodrigo Ortega ◽  
Marc Janssens ◽  
Paola Fincheira
2018 ◽  
Vol 9 (1) ◽  
pp. 17-24
Author(s):  
Paola Fincheira-Robles ◽  
María Martínez-Salgado ◽  
Rodrigo Ortega- Blu ◽  
Marc Janssens ◽  
Maribel Parada-Ibañez

1999 ◽  
Vol 79 (1) ◽  
pp. 37-45 ◽  
Author(s):  
M. A. Bolinder ◽  
D. A. Angers ◽  
E. G. Gregorich ◽  
M. R. Carter

The response of soil quality attributes to management practices across a diverse range of farming systems is key to identifying a robust minimum data set (MDS). The objectives of this study were to compare the response and consistency of different soil organic matter (SOM) attributes to changes in soil management practices in eastern Canadian agroecosystems. Soil samples (0–10 cm) were obtained at sites of several replicated experiments throughout eastern Canada, and 16 paired comparisons were selected to determine the effect of conservation (no-tillage, rotations, organic amendments) versus conventional (fall moldboard plowing, continuous cropping, no organic amendments) management practices. A sensitivity index was calculated for each of the attributes by dividing the values for conservation treatments with their conventionally managed counterparts (i.e., Conservation/Conventional). The index showed that light fraction (LF) N (1.58) and macro-organic matter-N (MOM-N) (1.54) were the most sensitive SOM attributes to conservation management practices. Light fraction-C (LF-C), macro-organic matter-C (MOM-C) and microbial biomass-C (MB-C) also showed high sensitivity to conservation management (1.48, 1.34 and 1.44, respectively). The sensitivity index for carbohydrates, whole soil C and total N were 1.23, 1.16 and 1.17, respectively. However, the Friedman two-way analysis of variance test indicated that the sensitivity of the different attributes to conservation management was site specific. For example, although LF-N was highly ranked, it did not respond as frequently as most of the other attributes. A non-parametric sign test showed that whole soil C and N provided the most consistent response to conservation management. The average sensitivity index was highest for the amendment (1.82) followed by the tillage (1.26) and rotational (1.14) conservation management practices, suggesting that organic amendments had the greatest impact on most of the attributes. These results suggest that for eastern Canadian soils, use of MOM-C and MOM-N, MB-C and whole soil C would provide a useful, easy to measure and robust MDS. Key words: Soil quality indicators, response, conservation management


2015 ◽  
Vol 27 (3) ◽  
pp. 219-232
Author(s):  
Antônio W. O. Rocha Junior ◽  
Guilherme A. H. A. Loureiro ◽  
Quintino R. Araujo ◽  
George A. Sodré ◽  
Arlicélio Q. Paiva ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Melku Dagnachew ◽  
Awdenegest Moges ◽  
Asfaw Kebede ◽  
Adane Abebe

Land degradation is a global negative environmental process that causes the decline in the productivity of land resources’ capacity to perform their functions. Though soil and water conservation (SWC) technologies have been adopted in Geshy subcatchment, their effects on soil quality were limitedly studied. The study was conducted to evaluate the effects SWC measures on soil quality indicators in Geshy subcatchment, Gojeb River Catchment, Ethiopia. A total of 54 soil samples (two treatments–farmlands with and without SWC measures ∗ three slope classes ∗ three terrace positions ∗ three replications) were collected at a depth of 20 cm. Statistical differences in soil quality indicators were analyzed using multivariate analysis of variance (ANOVA) following the general linear model procedure of SPSS Version 20.0 for Windows. Means that exhibited significant differences were compared using Tukey’s honest significance difference at 5% probability level. The studied soils are characterized by low bulk density, slightly acidic with clay and clay loam texture. The results revealed that farmlands with SWC measures had significantly improved soil physical (silt and clay fractions, and volumetric soil water content (VSWC)) and chemical (pH, SOC, TN, C : N ratio, and Av. phosphorus) quality indicators as compared with farmlands without SWC measures. The significantly higher VSWC, clay, SOC, TN, C : N ratio, and Av. P at the bottom slope classes and terrace positions could be attributed to the erosion reduction and deposition effects of SWC measures. Generally, the status of the studied soils is low in SOC contents, TN, C : N ratio, and Av. P (deficient). Thus, integral use of both physical and biological SWC options and agronomic interventions would have paramount importance in improving soil quality for better agricultural production and productivity.


2009 ◽  
Vol 40 (1-6) ◽  
pp. 419-434 ◽  
Author(s):  
Evangelia Vavoulidou ◽  
Elisabeth Avramides ◽  
Martin Wood ◽  
Polykarpos Lolos

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Michel Moussus ◽  
Matthias Meier

High resolution live imaging promises new insights into the cellular and molecular dynamics of the plant root system in response to external cues. Microfluidic platforms are valuable analytical tools that...


Sign in / Sign up

Export Citation Format

Share Document