scholarly journals Objects impact effect on thermal fatigue life of unidirectional T700 Carbon Fiber/Epoxy

2019 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
A. Anvari
2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

2011 ◽  
Vol 201-203 ◽  
pp. 2476-2480
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The in-phase and out-of-phase thermal fatigue of aluminum alloy were experimentally studied. The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method (mainly J integral). The results of experiments and calculations showed that the life of out-of-phase fatigue was longer than that of in-phase fatigue within the same strain range. This is the same as the results of other materials such as medium and low carbon steel. On the other hand, the predicted life was consistent with experimental results. This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of aluminum alloy and the calculation method developed here is efficient. A parameter ΔW was proposed from energy aspect to characterize the capacity of crack propagation. The in-phase thermal fatigue life was the same as the out-of-phase thermal fatigue life for identical ΔW values.


Author(s):  
Tomohiro Takahashi ◽  
Qiang Yu ◽  
Masahiro Kobayashi

For power module, the reliability evaluation of thermal fatigue life by power cycling has been prioritized as an important concern. Since in power cycling produces there exists non-uniform temperature distribution in the power module, coupled thermal-structure analysis is required to evaluate thermal fatigue mechanism. The thermal expansion difference between a Si chip and a substrate causes thermal fatigue. In this study, thermal fatigue life of solder joints on power module was evaluated. The finite element method (FEM) was used to evaluate temperature distribution induced by joule heating. Higher temperature appears below the Al wire because the electric current flows through the bonding Al wire. Coupled thermal-structure analysis is also required to evaluate the inelastic strain distribution. The damage of each part of solder joint can be calculated from equivalent inelastic strain range and crack propagation was simulated by deleting damaged elements step by step. The initial cracks were caused below the bonding Al wire and propagated concentrically under power cycling. There is the difference from environmental thermal cycling where the crack initiated at the edge of solder layer. In addition, in order to accurately evaluate the thermal fatigue life, the factors affecting the thermal fatigue life of solder joint where verified using coupled electrical-thermal-structural analysis. Then, the relation between the thermal fatigue life of solder joint and each factor is clarified. The precision evaluation for the thermal fatigue life of power module is improved.


2016 ◽  
Vol 48 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Y. Q. Liu ◽  
Q. H. Shang ◽  
D. H. Zhang ◽  
Y. X. Wang ◽  
T. T. Sun

Sign in / Sign up

Export Citation Format

Share Document