scholarly journals Características da esteira turbulenta do modelo de um aerogerador

2018 ◽  
Vol 40 ◽  
pp. 155
Author(s):  
Adrián Roberto Wittwer ◽  
Rodrigo Dorado ◽  
Acir Loredo-Souza ◽  
Arthur Bones ◽  
Bruno Capeller ◽  
...  

An experimental study of the turbulent wake of a wind turbine model was realized at the “Joaquim Blessmann” wind tunnel of the UFRGS. The turbine model was developed at the Universidade de Caxias do Sul and it represents a three blade turbine characterized by a NACA 4412 aerodynamic profile. Measurements of the velocity fluctuations were realized by hot wire anemometry. Complexity of the turbulent flow is evaluated by mean and fluctuating velocity profiles. The influence of the incident flow turbulence and the flow reconstructing process are analyzed by the measurement results.

2017 ◽  
Vol 832 ◽  
pp. 287-328 ◽  
Author(s):  
Ric Porteous ◽  
Danielle J. Moreau ◽  
Con J. Doolan

This paper presents the results of an experimental study that relates the flow structures in the wake of a square finite wall-mounted cylinder with the radiated noise. Acoustic and hot-wire measurements were taken in an anechoic wind tunnel. The cylinder was immersed in a near-zero-pressure gradient boundary layer whose thickness was 130 % of the cylinder width, $W$. Aspect ratios were in the range $0.29\leqslant L/W\leqslant 22.9$ (where $L$ is the cylinder span), and the Reynolds number, based on width, was $1.4\times 10^{4}$. Four shedding regimes were identified, namely R0 ($L/W<2$), RI ($2<L/W<10$), RII ($10<L/W<18$) and RIII ($L/W>18$), with each shedding regime displaying an additional acoustic tone as the aspect ratio was increased. At low aspect ratios (R0 and RI), downwash dominated the wake, creating a highly three-dimensional shedding environment with maximum downwash at $L/W\approx 7$. Looping vortex structures were visualised using a phase eduction technique. The principal core of the loops generated the most noise perpendicular to the cylinder. For higher aspect ratios in RII and RIII, the main noise producing structures consisted of a series of inclined vortex filaments, where the angle of inclination varied between vortex cells.


2004 ◽  
Author(s):  
Babak Emami ◽  
Rui Liu ◽  
David S.-K. Ting ◽  
M. David Checkel

The effects of ‘half-full-half’ cylinders on the distortion of a turbulent flow are experimentally investigated. A single hot-wire anemometry unit is used to measure the stream-wise parameters of the flow. The cylinders are 15.2 cm (6 in) in diameter and 76.2 cm (30 in) in height installed in a closed loop wind tunnel with a 76.2 cm by 76.2 cm (30 in by 30 in) cross section. Turbulent flow with a nominal mean velocity of 7.6 m/s was generated by means of a perforated plate situated at the entrance of the wind tunnel. It was found that the mean velocity increases significantly as the flow passes through the contracting passage created by the cylinders, whereas the rms turbulence intensity decreases about 12% but shows an increase of up to 14% very close to the full cylinder. As the flow was distorted, the Kolmogorov length scales were elongated in the stream-wise direction, resulting in a decrease in the rate of turbulence decay which appears as a decrease in energy dissipation rate. The stream-wise integral length scales also increased due to the elongation of eddies in the stream-wise direction. Also, analysis of the turbulence fluctuating velocity in the frequency domain showed a redistribution of stream-wise turbulence kinetic energy from large to small scales during the distortion.


1983 ◽  
Vol 133 ◽  
pp. 83-112 ◽  
Author(s):  
J. G. Kawall ◽  
M. Shokr ◽  
J. F. Keffer

A novel, digital, hot-wire anemometer technique for the simultaneous measurement of the instantaneous streamwise and lateral velocity fields in high-intensity turbulent flows is discussed. It involves the use of a three-wire probe comprising two 45° slanted hot wires and a normal hot wire. A comprehensive and systematic examination of several factors that can affect the fidelity of the streamwise and lateral velocity waveforms is developed to assess the performance of the new technique as well as hot-wire systems generally. These factors are: (i) rectification, which stems from the inherent insensitivity of hot wires to the direction of the instantaneous (total) velocity vector in a turbulent flow; (ii) spanwise velocity fluctuations; (iii) axial cooling of hot wires; (iv) unpredictable variations in one of four hot-wire calibration parameters; (v) random hot-wire calibration errors; (vi) spanwise separation of the hot wires. Relevant hot-wire anemometer-response equations relating instantaneous anemometer output voltages to instantaneous flow velocities were established on the basis of extensive voltage-velocity calibration data pertaining to hot wires orientated with respect to the calibration flow velocity at various yaw and pitch angles ranging from 0° to 90°. Simulated Gaussian (streamwise, lateral and spanwise) velocity fields appropriate to flows with turbulence intensity levels varying between 5 and 80% and Reynolds shear-stress coefficients varying between 0.1 and 0.5 were generated by means of a digital computer, and the associated anemometer-voltage signals computed in accordance with the response equations subject to different combinations of the first four of the aforementioned factors. In order to take into account the effects of the last two factors, viz calibration errors and spanwise wire separation, uncorrelated Gaussian ‘noise’ fluctuations were superimposed on the above voltage signals. Estimates of the known (simulated) streamwise and lateral velocity signals were then determined by simultaneous solution of (a) the actual instantaneous response equations, (b) approximate versions of them, and (c) linearized versions of them. The results indicate that reasonably accurate estimates of velocity signals from a turbulent flow can be obtained by means of conventional hot-wire anemometer techniques – which assume that anemometer voltage fluctuations are linear functions of corresponding velocity fluctuations – only if the turbulent intensity level of the flow does not exceed about 20%. In marked contrast, the 3-wire anemometer technique introduced here can be used to measure streamwise and lateral velocity signals simultaneously with a high degree of accuracy for turbulence-intensity levels of up to 40%. In addition, this technique is capable of yielding high-fidelity streamwise velocity waveforms for levels in excess of 70%.


Soft Matter ◽  
2022 ◽  
Author(s):  
Aile Sun ◽  
Yinqiao Wang ◽  
Yangrui Chen ◽  
Jin Shang ◽  
Jie Zheng ◽  
...  

We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of...


Sign in / Sign up

Export Citation Format

Share Document