Configuration and Analysis of a Feed-forward Control System for Jacket Cooling Water Temperature of Marine Prime Diesel Engine

2008 ◽  
Vol 32 (8) ◽  
pp. 1303-1308
Author(s):  
Soon-Man Choi
1993 ◽  
Vol 28 (4) ◽  
pp. 264-270 ◽  
Author(s):  
Hideaki Tanabe ◽  
Sadayuki Nakagawa ◽  
G. Takeshi Sato ◽  
Yoshihiro Funayama

2013 ◽  
Vol 805-806 ◽  
pp. 1970-1974
Author(s):  
Hong Lei Pang ◽  
Cai Yun Zhu ◽  
Zhi Bin Ni ◽  
Yao Hua Wei

In order to solve the problem that the traditional cooling system cannot adjust the cooling water temperature to the different operation conditions of diesel engine, the auto-control cooling system is designed. Using it, the coolant temperature can be adjusted automatically by the single-chip which controls the transducer-controlled pump and the electronic dividing valve which replaces the thermostat. We use the thermal equilibrium bench to verify the figures, and the result is show that using the exhaust of generator heats the cooling water can shorten 13 minutes in starting process and the cooling water temperature adjusted automatically to the changing operation conditions of iesel can decrease the fuel consumption remarkably, the highest fuel saving rate reached 5.4%, the averagely fuel saving rate reached 3.6%.


2021 ◽  
Vol 13 (11) ◽  
pp. 5957
Author(s):  
Tomas Mauder ◽  
Michal Brezina

Production of overall CO2 emissions has exhibited a significant reduction in almost every industry in the last decades. The steelmaking industry is still one of the most significant producers of CO2 emissions worldwide. The processes and facilities used at steel plants, such as the blast furnace and the electric arc furnace, generate a large amount of waste heat, which can be recovered and meaningfully used. Another way to reduce CO2 emissions is to reduce the number of low-quality steel products which, due to poor final quality, need to be scrapped. Steel product quality is strongly dependent on the continuous casting process where the molten steel is converted into solid semifinished products such as slabs, blooms, or billets. It was observed that the crack formation can be affected by the water cooling temperature used for spray cooling which varies during the year. Therefore, a proper determination of the cooling water temperature can prevent the occurrence of steel defects. The main idea is based on the utilization of the waste heat inside the steel plant for preheating the cooling water used for spray cooling in the Continuous Casting (CC) process in terms of water temperature stabilization. This approach can improve the quality of steel and contribute to the reduction of greenhouse gas emissions. The results show that, in the case of billet casting, a reduction in the cooling water consumption can be also reached. The presented tools for achieving these goals are based on laboratory experiments and on advanced numerical simulations of the casting process.


Sign in / Sign up

Export Citation Format

Share Document