scholarly journals PHYSICAL AND ENGINEERING PROPERTIES OF PEAT SOIL STABILIZED WITH THE ADMIXTURE OF CACO3+RICE HUSK ASH DUE TO WATER INFILTRATION FROM SURROUNDING AREAS

Author(s):  
Faisal Estu Yulianto ◽  
Noor Endah Mochtar ◽  
M. Ma'ruf Amin

Peat is a type of soil with high organic content, very low bearing capacity, and high uneven settlement. Some methods to improve soil have been applied to peat in order to make it strong enough for civilization-building foundation situated on it. Peat stabilization is a method that is continuously developed considering that the cost it needs is lower and this approach is more environmentally friendly compared to other methods. The admixture of lime (CaCO3) and Rice husk ash, a new ecofriendly stabilizer material, has been applied to peat soil and showed a good result. However, in studies conducted previously, the effect of water infiltration from surrounding areas of soil was stabilized was not involved as variable influencing the change of parameter. Based on that, this laboratory study was carried out to model the real condition in the field when the stabilization is performed and to identify the physical and engineering changes of peat soil in the 10th, 20th, and 30th days of stabilization in its border and middle parts, with the percentage of material stabilizer 5%, 10%, 15% and 20% of the unit weight of the initial condition of peat. The result of laboratory test shows that the addition of admixture of lime (CaCO3) and rice husk ash can improve the physical and engineering properties of peat soil are stabilized. Water infiltration occurred on peat soil is stabilized has not affected the physical and engineering properties of the soil. It can be seen from the physical and engineering properties of the border and central parts of peat soil is stabilized that still have a similar value. It is assumed to be caused by CaSiO3 gel formed still needs a longer duration to become stable gel. However, in this initial study it was known that the more stabilizers added, made the better the parameters of the stabilized peat soil.

2019 ◽  
Vol 258 ◽  
pp. 01014
Author(s):  
Noorfaizah Hamzah ◽  
Nur ‘Ain Mat Yusof ◽  
Muhammad Ihsan Haziq Mohd Rahimi

Construction activities on peat soils are found to be extremely difficult as the soil is profound as soft soil and has low shear strength and high moisture content. Due to alternating swelling and shrinkage nature, it causes serious damage to the structure above it. This happens due to repetition of drying and wetting of soil. Stabilization of soil is commonly applied to improve the mechanical properties of soil prior to soil engineering works. This soil improvement method is advantageous and effective one by using waste materials. Waste in our country is divided in various types and it includes domestic wastes, industrial wasters, agricultural wastes etc. Because of difficulties to diminish these wastes without affect to environment and surroundings, it can be used as a stabilizing agent in the soil. Therefore, this experimental study carried out to evaluate the effect of Rice Husk Ash (RHA) and sawdust on engineering properties of the peat soil. The properties such as compaction and unconfined compressive strength are determined separately with sawdust and added of RHA in peat soil at a variety of percentages (2.5%, 5% etc.) in addition small amount of constant rate of lime with 2% of the dry soil weight. By obtaining the results, it can deduce a promising and improving result in stabilizing the soil with sawdust and Rice Husk Ash in both economic and strength capacity. This will not only solve the waste disposal problem but also enhance the strength characteristics of soil significantly.


2018 ◽  
Author(s):  
Nik Norsyahariati Nik Daud ◽  
Mohd Nazrin Mohd Daud ◽  
Abubakar Sadiq Muhammed

2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.


2018 ◽  
Author(s):  
Nguyen Hoc Thang ◽  
Nguyen Ngoc Hoa ◽  
Pham Vo Thi Ha Quyen ◽  
Nguyen Ngoc Kim Tuyen ◽  
Tran Vu Thao Anh ◽  
...  

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Lalani Fernando ◽  
Karunananda Pemasiri ◽  
Buddhika Dassanayake

Sign in / Sign up

Export Citation Format

Share Document