scholarly journals Assessment of compressive strength of peat soil with sawdust and Rice Husk Ash (RHA) with hydrated lime as additive

2019 ◽  
Vol 258 ◽  
pp. 01014
Author(s):  
Noorfaizah Hamzah ◽  
Nur ‘Ain Mat Yusof ◽  
Muhammad Ihsan Haziq Mohd Rahimi

Construction activities on peat soils are found to be extremely difficult as the soil is profound as soft soil and has low shear strength and high moisture content. Due to alternating swelling and shrinkage nature, it causes serious damage to the structure above it. This happens due to repetition of drying and wetting of soil. Stabilization of soil is commonly applied to improve the mechanical properties of soil prior to soil engineering works. This soil improvement method is advantageous and effective one by using waste materials. Waste in our country is divided in various types and it includes domestic wastes, industrial wasters, agricultural wastes etc. Because of difficulties to diminish these wastes without affect to environment and surroundings, it can be used as a stabilizing agent in the soil. Therefore, this experimental study carried out to evaluate the effect of Rice Husk Ash (RHA) and sawdust on engineering properties of the peat soil. The properties such as compaction and unconfined compressive strength are determined separately with sawdust and added of RHA in peat soil at a variety of percentages (2.5%, 5% etc.) in addition small amount of constant rate of lime with 2% of the dry soil weight. By obtaining the results, it can deduce a promising and improving result in stabilizing the soil with sawdust and Rice Husk Ash in both economic and strength capacity. This will not only solve the waste disposal problem but also enhance the strength characteristics of soil significantly.

2019 ◽  
Vol 803 ◽  
pp. 331-337 ◽  
Author(s):  
Hengchhorn Phai ◽  
Amin Eisazadeh

Bangkok clay (BC) is notorious for its poor engineering properties in Thailand and world-widely. In terms of workability, it is significant to modify its naturally weak properties. Nowadays, humans are overusing Earth’s resources and generating so much waste. In consequence, eco-friendly and cost cutting improvements are appreciated in geotechnical field. At the same time, Rice Husk Ash (RHA) is a cheap potential material for soil improvement. Lime is also known as a common material used in soil stabilization both solely and mixed with other materials. An inevitable step to every soil stabilization is to perform compaction tests that gives basic notions to treat soil. In this experimental study, compaction tests were proceeded with soil mixed with 0%, 10%, 20%, 30%, 50% of Rice Husk Ash (RHA) by dry soil mass in replacement manner and added 0%, 4%, 8%, 12% of lime. Overall, the more RHA and lime amount is mixed with soil, the higher Optimum Moisture Content (OMC) gets. This means that when replacement/stabilizers are added more and more, the soil needs more water to reach its Maximum Dry Density (MDD). Unlike OMC, MDD reduces when quantity of additives is increased.


2020 ◽  
Vol 53 (2C) ◽  
pp. 1-12
Author(s):  
Duong Nguyen

Rice husk ash (RHA) is an agricultural residue and has shown great potential for soil stabilization. However, the research on the utilization of RHA for soft soil improvement using cement deep mixing method is still limited and the efficiency of using different RHA types for soil improvement needs to be clarified. In this study, the effect of different RHA types on Atterberg limits, unconfined compressive strength (UCS), and elastic modulus (E50) of soil-cement mixtures will be investigated. Two types of RHA which obtained from open fire burning (RHA1) and burning in a furnace under controlled conditions of temperature and duration of burning (RHA2), were used for this study. The RHA contents from 0 to 15% and 10% cement of the dry weight of the soil were used to treat the soft soil. The research results show that the types of RHA insignificantly affect the change in Atterberg limits of cement-admixed soil. Regarding the soil strength, the RHA2 shows a higher efficiency in the enhancement of treated soil strength at 28 days of curing than the RHA1. The addition of 12% RHA2 to the cement-admixed soil can increase the UCS and E50 values of treated soil by more than 50%.


2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Atikah Rahmi ◽  
Siti Noor Linda Taib ◽  
Fauzan Sahdi

Natural peat is considered incapable of supporting built structure due to its poor engineering properties. Chemical stabilization is one of the peat soil improvement methods which has been studied by many researchers. This study describes an investigation of water additive (W/A) ratio application on cement-stabilized peat strength. Peat soil at different moisture contents, which are 1210%, 803%, and 380%, were stabilized with cement by W/A ratio of 2.0, 2.5, 3.0, 3.5, and 4.0. Unconfined compressive strength (UCS) test was conducted after the specimens were being air-cured for 28 and 56 days. The result shows that there is an increase of UCS value as the decrease of W/A ratio (the increase of cement dosage) and the increase of curing time and peat moisture content. The higher strength found in the specimen with higher moisture content, compared to the lower one at the same W/A ratio, shows that the mix design of cement-stabilized peat using W/A ratio should have differed under different peat natural moisture contents. From the result, it is also found that cement hydrolysis reaction occurred despite the presence of humic acid in the peat soil, which by many studies is assumed will hinder the cement-soil reaction.


2012 ◽  
Vol 248 ◽  
pp. 292-297 ◽  
Author(s):  
Ahmad Rifa’i ◽  
Noriyuki Yasufuku ◽  
Kiyoshi Omine

Volcanic ash becomes environmental important issues as waste material if it is not effectively reduced or reused. In engineering practice, utilization of volcanic ash as substitution material is limited. Indonesia has a large road on soft soil and volcanic ash. The objectives of this paper are focused to study the characterization, classification and utilization of volcanic ash as soil stabilization material which give benefit in engineering practice and also be environmental friendly material. Engineering properties, mineral composition and soil mixture characteristics involve physical and mechanical properties are discussed. Result shows that the effect of addition of volcanic ash after curing time 14 days can improve the engineering properties of soft soil, decrease liquid limit, change curve of grain size distribution, increase bearing capacity, and decrease swelling potential. The soil-volcanic ash mixture with 35% of volcanic ash and 5% of lime is obtained as optimum mixture design. This result is still early stage and need further study.


2013 ◽  
Vol 795 ◽  
pp. 14-18 ◽  
Author(s):  
Y.C. Khoo ◽  
I. Johari ◽  
Zainal Arifin Ahmad

The aim of this study is to determine the influence of rice husk ash (RHA) on the engineering properties of fired-clay brick with the present of 10% sand. Temperature 1200°C is selected as the optimum temperature based on the preliminaries study. X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF), were carried out to determine the characteristic of raw materials used. Mechanical properties of rice husk ash-clay bricks are determined in terms of compressive strength, porosity and water absorption. The results shows that increase in RHA replacement percentage reduce the compressive strength and linear shrinkage of fired-clay bricks while the porosity and water absorption value increase. From the investigation, we can conclude that the optimum mixing ratio for fired-clay brick containing RHA is 15% because it complied with the minimum requirement for building material in term of strength and water absorption.


The focus of this report is to study the feasibility of stabilizing the soil by using rice husk ash and coconut coir fibre, thus re-using the waste materials and providing an economical and eco-friendly method of soil stabilization. Soil stabilisation is a system to treat the soil to improve the performance of the soil. The capacity, rice husk ash as stabilizing additive to expansive soil is evaluated for the enhancing engineering properties of expansive soil. The Assessment includes the dedication of the swelling capacity, plastic limit, liquid limit, plasticity index, cohesion & compaction characteristics of the expansive soil. For the soil which lacks enough stability, various stabilization techniques can be adopted. Various percentage of rice husk ash and coconut coir Fibre (5% to 25%). the practices were executed on 5 proportions 5% ,10%,15%, 20% and 25% with the sample. The optimum value of the assessment is found at the proportion of 15% in table 3i.e.the value of unconfined compressive strength is 142kN/m2. Expansive clays are very problematic soils and not suitable for construction. Because of the change in volume when it exposes to water. Usually in rainy season, they absorb water and swells and in summer it shrinks.


Author(s):  
Faisal Estu Yulianto ◽  
Noor Endah Mochtar ◽  
M. Ma'ruf Amin

Peat is a type of soil with high organic content, very low bearing capacity, and high uneven settlement. Some methods to improve soil have been applied to peat in order to make it strong enough for civilization-building foundation situated on it. Peat stabilization is a method that is continuously developed considering that the cost it needs is lower and this approach is more environmentally friendly compared to other methods. The admixture of lime (CaCO3) and Rice husk ash, a new ecofriendly stabilizer material, has been applied to peat soil and showed a good result. However, in studies conducted previously, the effect of water infiltration from surrounding areas of soil was stabilized was not involved as variable influencing the change of parameter. Based on that, this laboratory study was carried out to model the real condition in the field when the stabilization is performed and to identify the physical and engineering changes of peat soil in the 10th, 20th, and 30th days of stabilization in its border and middle parts, with the percentage of material stabilizer 5%, 10%, 15% and 20% of the unit weight of the initial condition of peat. The result of laboratory test shows that the addition of admixture of lime (CaCO3) and rice husk ash can improve the physical and engineering properties of peat soil are stabilized. Water infiltration occurred on peat soil is stabilized has not affected the physical and engineering properties of the soil. It can be seen from the physical and engineering properties of the border and central parts of peat soil is stabilized that still have a similar value. It is assumed to be caused by CaSiO3 gel formed still needs a longer duration to become stable gel. However, in this initial study it was known that the more stabilizers added, made the better the parameters of the stabilized peat soil.


Sign in / Sign up

Export Citation Format

Share Document