Special Characteristics of Rational Numbers

1984 ◽  
Vol 31 (6) ◽  
pp. 10-12
Author(s):  
Dora Helen B. Skypek

The characteristics of rational numbers must be considered in a variety of interpretations and coding schemes. It is this variety that, if not sorted and carefully developed in appropriate contexts, results in confusion in teaching and learning about rational numbers. Although a discussion of interpretations necessarily involves the use of coding conventions, the two will be treated separately as special characteristics of the rational numbers. Another important charac-teristic. which is difficult to separate from interpretations and coding conventions. is this: unlike a whole number (or an integer), a rational number has an unlimited number of “behavioral clones.” These clones have different names, but they behave in exactly the same way. Still other Still other characteristics to be considered are the density and order of the rational number.

Pythagoras ◽  
2015 ◽  
Vol 36 (1) ◽  
Author(s):  
Bruce Brown

It is commonly accepted that the knowledge and learning of rational numbers is more complex than that of the whole number field. This complexity includes the broader range of application of rational numbers, the increased level of technical complexity in the mathematical structure and symbol systems of this field and the more complex nature of many conceptual properties of the rational number field. Research on rational number learning is divided as to whether children’s difficulties in learning rational numbers arise only from the increased complexity or also include elements of conceptual change. This article argues for a fundamental conceptual difference between whole and rational numbers. It develops the position that rational numbers are fundamentally relational in nature and that the move from absolute counts to relative comparisons leads to a further level of abstraction in our understanding of number and quantity. The argument is based on a number of qualitative, in-depth research projects with children and adults. These research projects indicated the importance of such a relational understanding in both the learning and teaching of rational numbers, as well as in adult representations of rational numbers on the number line. Acknowledgement of such a conceptual change could have important consequences for the teaching and learning of rational numbers.


2021 ◽  
Author(s):  
Miriam Rosenberg-Lee

Rational numbers, such as fractions, decimals and percentages, are a persistent challenge in the mathematics curriculum. An underappreciated source of rational number difficulties are whole number properties that apply to some, but not all, rational numbers. I contend that mastery of rational numbers involves refining and expanding whole number representations. Behavioral evidence for the role inhibitory control and magnitude-based processing of rational numbers support this hypothesis, although more attention is needed to task and stimuli selection, especially among fractions. In the brain, there is scant evidence on the role of inhibitory control in rational number processing, but surprisingly good correspondence, in the parietal lobe, between the handful of neuroimaging studies of rational numbers and the accumulated whole number literature. Decimals and discrete nonsymbolic representations are fruitful domains for probing the neural basis role of whole number interference in rational number processing.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


2012 ◽  
Vol 18 (3) ◽  
pp. 189

This call for manuscripts is requesting articles that address how to make sense of rational numbers in their myriad forms, including as fractions, ratios, rates, percentages, and decimals.


2013 ◽  
Vol 21 (2) ◽  
pp. 115-125
Author(s):  
Yuichi Futa ◽  
Hiroyuki Okazaki ◽  
Daichi Mizushima ◽  
Yasunari Shidama

Summary Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.


2014 ◽  
Vol 10 (05) ◽  
pp. 1241-1244 ◽  
Author(s):  
Kurt Girstmair

Given a rational number x and a bound ε, we exhibit m, n such that |x - s(m, n)| < ε. Here s(m, n) is the classical Dedekind sum and the parameters m and n are completely explicit in terms of x and ε.


1969 ◽  
Vol 62 (3) ◽  
pp. 220-221
Author(s):  
Philip Peak

One of the basic principles we follow in our teaching is to relate new ideas with old ideas. Dr. Forbes has done just this in his article about extending the concept of rational numbers to real numbers. He points out how this extension cannot follow the same pattern as that of extensions positive to negative integers or from integers to rationals. If we look to a definition for motivating the extension we at best can only say, “Some polynomial equations have no rational number solutions and do have some real number solutions.” We might use least-upperbound idea, or we might try motivating through nonperiodic infinite decimals. However, Dr. Forbes rejects all of these and makes the tie-in through a geometric approach.


2017 ◽  
Vol 24 (2) ◽  
pp. 198-220 ◽  
Author(s):  
Yulia A. Tyumeneva ◽  
Galina Larina ◽  
Ekaterina Alexandrova ◽  
Melissa DeWolf ◽  
Miriam Bassok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document