scholarly journals Prediction of noise and vibration. On wide-area prediction methods of noise environment.

1996 ◽  
Vol 25 (9) ◽  
pp. 494-500
Author(s):  
Hiroshi KOI ◽  
Ichiro AOI
Author(s):  
D. E. Becker

An efficient, robust, and widely-applicable technique is presented for computational synthesis of high-resolution, wide-area images of a specimen from a series of overlapping partial views. This technique can also be used to combine the results of various forms of image analysis, such as segmentation, automated cell counting, deblurring, and neuron tracing, to generate representations that are equivalent to processing the large wide-area image, rather than the individual partial views. This can be a first step towards quantitation of the higher-level tissue architecture. The computational approach overcomes mechanical limitations, such as hysterisis and backlash, of microscope stages. It also automates a procedure that is currently done manually. One application is the high-resolution visualization and/or quantitation of large batches of specimens that are much wider than the field of view of the microscope.The automated montage synthesis begins by computing a concise set of landmark points for each partial view. The type of landmarks used can vary greatly depending on the images of interest. In many cases, image analysis performed on each data set can provide useful landmarks. Even when no such “natural” landmarks are available, image processing can often provide useful landmarks.


Author(s):  
K. K. Christenson ◽  
J. A. Eades

One of the strengths of the Philips EM-400 series of TEMs is their ability to operate under two distinct optical configurations: “microprobe”, the normal TEM operating condition which allows wide area illumination, and “nanoprobe”, which gives very small probes with high angular convergence for STEM imaging, microchemical and microstructural analyses. This change is accomplished by effectively turning off the twin lens located in the upper pole piece which changes the illumination from a telefocus system to a condenser-objective system. The deflection and tilt controls and alignments are designed for microprobe use and do not function properly when in nanoprobe. For instance, in nanoprobe the deflection control gives a mix of deflection and tilt; as does the tilt control.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Jiyuan Tan ◽  
Qianqian Qiu ◽  
Shuofeng Wang ◽  
Na Xie ◽  
Yuelong Su ◽  
...  
Keyword(s):  

Author(s):  
A. Z. A. Mazlan ◽  
M. H. A. Satar ◽  
M. H. Hamdan ◽  
M. S. Md. Isa ◽  
S. Man ◽  
...  

The automotive heating and ventilating air condition (HVAC) system, when vibrating, can generate various types of noises such as humming, hissing, clicking and air-rushes. These noises can be characterised to determine their root causes. In this study, the humming-type noise is taken into consideration whereby the noise and vibration characteristics are measured from various HVAC components such as power steering pump, compressor and air conditional pipe. Four types of measurement sensors were used in this study - tachometer for rpm tracking; accelerometer for the vibration microphone for the noise; and sound camera for the visualization measurement. Two types of operating conditions were taken into consideration - they were “idle” (850 rpm) and “running” (850-1400 rpm) conditions. A constant blower speed was applied for both conditions. The result shows that the humming noises can be determined at the frequency range of 300-350 Hz and 150-250 Hz for both idle and running conditions, respectively. The vibration of the power steering pump shows the worst acceleration of 1.8 m/s2 at the frequency range of 150-250 Hz, compared to the compressor and air conditional pipe. This result was validated with the 3D colour order and sound camera analyses, in which the humming noise colour mapping shows dominance in this frequency range.  


Sign in / Sign up

Export Citation Format

Share Document