A Study on Classification Algorithm of Rectangle Curved Hull Plates for Plate Fabrication

2016 ◽  
Vol 32 (03) ◽  
pp. 166-173
Author(s):  
ChanSuk Kim ◽  
Jong Gye Shin ◽  
Eungkon Kim ◽  
YangRyul Choi

Since a ship's hull consists of various curved plates, different fabrication methods are applied for efficient fabrication works of curved hull plates. Currently, the classification methods largely rely on division resolution and thus lead to insufficient reliability. This article proposes four standard shapes for fabrication by calculating boundary curvature of each curved plate so that same curvature areas could be acquired. Some examples are carried out for the classification of curved hull plates.

2013 ◽  
Vol 64 (3) ◽  
Author(s):  
Hamza Awad Hamza Ibrahim ◽  
Sulaiman Mohd Nor ◽  
Ali Ahmed

Classification of interactive applications such as online games has gained more attention in the last few years. However, most of the current classification methods were only valid for offline classification. The three common classification methods i.e. port, payload and statistics based have some limitations. This paper exploits the advantages of all the three methods by combining them to produce a new classification algorithm called SSPC (Signature Static Port Classifier). In the proposed algorithm, each of the three classifiers will individually classify the same traffic flow. Based on some priority rules, SSPC makes classification decision for each flow. The SSPC algorithm was used to classify online game (LOL) traffic in two stages, initially offline and later online. SSPC produces a higher accuracy of 91% on average for online classification when compared with other classifiers. In addition, as demonstrated in the real time online experiments done, SSPC algorithm uses a short time to classify traffic and thus it is suitable to be used for online classification.


2017 ◽  
Vol 100 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Ana M Jiménez-Carvelo ◽  
Antonio González-Casado ◽  
Estefanía Pérez-Castaño ◽  
Luis Cuadros-Rodríguez

Abstract A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phaseLC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis tookonly 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil wereused: one input-class, two input-class, and pseudo two input-class.


Author(s):  
Baichen Jiang ◽  
Wei Zhou ◽  
Jian Guan ◽  
Jialong Jin

Classifying the motion pattern of marine targets is of important significance to promote target surveillance and management efficiency of marine area and to guarantee sea route safety. This paper proposes a moving target classification algorithm model based on channel extraction-segmentation-LCSCA-lp norm minimization. The algorithm firstly analyzes the entire distribution of channels in specific region, and defines the categories of potential ship motion patterns; on this basis, through secondary segmentation processing method, it obtains several line segment trajectories as training sample sets, to improve the accuracy of classification algorithm; then, it further uses the Leastsquares Cubic Spline Curves Approximation (LCSCA) technology to represent the training sample sets, and builds a motion pattern classification sample dictionary; finally, it uses lp norm minimized sparse representation classification model to realize the classification of motion patterns. The verification experiment based on real spatial-temporal trajectory dataset indicates that, this method can effectively realize the motion pattern classification of marine targets, and shows better time performance and classification accuracy than other representative classification methods.


Mekatronika ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 115-121
Author(s):  
Asrul Adam ◽  
Ammar Faiz Zainal Abidin ◽  
Zulkifli Md Yusof ◽  
Norrima Mokhtar ◽  
Mohd Ibrahim Shapiai

In this paper, the developments in the field of EEG signals peaks detection and classification methods based on time-domain analysis have been discussed. The use of peak classification algorithm has end up the most significant approach in several applications. Generally, the peaks detection and classification algorithm is a first step in detecting any event-related for the variation of signals. A review based on the variety of peak models on their respective classification methods and applications have been investigated. In addition, this paper also discusses on the existing feature selection algorithms in the field of peaks classification.


Author(s):  
A Haris Rangkuti

 This paper introduces a classification of the image of the batik process, which is based on the similarity of the characteristics, by combining the method of wavelet transform Daubechies type 2 level 2, to process the characteristic texture consisting of standard deviation, mean and energy as input variables, using the method of Fuzzy Neural Network (FNN). Fuzzyfikasi process will be carried out all input values with five categories: Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). The result will be a fuzzy input in the process of neural network classification methods. The result will be a fuzzy input in the process of neural network classification methods. For the image to be processed seven types of batik motif is ceplok, kawung, lereng, parang, megamendung, tambal and nitik. The results of the classification process with FNN is rule generation, so for the new image of batik can be immediately known motif types after treatment with FNN classification.  For the degree of precision of this method is 86-92%.


2018 ◽  
Vol 5 (1) ◽  
pp. 8 ◽  
Author(s):  
Ajib Susanto ◽  
Daurat Sinaga ◽  
Christy Atika Sari ◽  
Eko Hari Rachmawanto ◽  
De Rosal Ignatius Moses Setiadi

The classification of Javanese character images is done with the aim of recognizing each character. The selected classification algorithm is K-Nearest Neighbor (KNN) at K = 1, 3, 5, 7, and 9. To improve KNN performance in Javanese character written by the author, and to prove that feature extraction is needed in the process image classification of Javanese character. In this study selected Local Binary Patter (LBP) as a feature extraction because there are research objects with a certain level of slope. The LBP parameters are used between [16 16], [32 32], [64 64], [128 128], and [256 256]. Experiments were performed on 80 training drawings and 40 test images. KNN values after combination with LBP characteristic extraction were 82.5% at K = 3 and LBP parameters [64 64].


2018 ◽  
Vol 45 ◽  
pp. 00041
Author(s):  
Andrzej Kuliczkowski ◽  
Stanisław Nogaj

Technologies for the trenchless rehabilitation of pipelines using various types of coatings have been used for almost half a century. Considering that the assumed life expectancy of such renewed pipelines is 50 years, it will be necessary to assess their technical condition in the near future. The aim of this article is to attempt to answer the question "Do existing damage classification methods allow for the full and reliable assessment of the sewers already renewed with rehabilitation coatings?". The scope of the article, and its original part, is to describe how the problem of damage assessment of rehabilitation coatings has been included in various methods of classification of underground infrastructure pipelines, and conducting a comparison that compares these methods in terms of the damages described. An interpretation of the results of the research on rehabilitation coatings operated in various time periods, starting from those recently applied to those operating for over 30 years, was also made. The result of the analysis is to present the differences and deficiencies in the damage classification methods discussed.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Guobin Chen ◽  
Xianzhong Xie ◽  
Shijin Li

Screening and classification of characteristic genes is a complex classification problem, and the characteristic sequences of gene expression show high-dimensional characteristics. How to select an effective gene screening algorithm is the main problem to be solved by analyzing gene chips. The combination of KNN, SVM, and SVM-RFE is selected to screen complex classification problems, and a new method to solve complex classification problems is provided. In the process of gene chip pretreatment, LogFC and P value equivalents in the gene expression matrix are screened, and different gene features are screened, and then SVM-RFE algorithm is used to sort and screen genes. Firstly, the characteristics of gene chips are analyzed and the number between probes and genes is counted. Clustering analysis among each sample and PCA classification analysis of different samples are carried out. Secondly, the basic algorithms of SVM and KNN are tested, and the important indexes such as error rate and accuracy rate of the algorithms are tested to obtain the optimal parameters. Finally, the performance indexes of accuracy, precision, recall, and F1 of several complex classification algorithms are compared through the complex classification of SVM, KNN, KNN-PCA, SVM-PCA, SVM-RFE-SVM, and SVM-RFE-KNN at P=0. 01,0.05,0.001. SVM-RFE-SVM has the best classification effect and can be used as a gene chip classification algorithm to analyze the characteristics of genes.


2019 ◽  
Vol 11 (4) ◽  
pp. 405
Author(s):  
Xuan Feng ◽  
Haoqiu Zhou ◽  
Cai Liu ◽  
Yan Zhang ◽  
Wenjing Liang ◽  
...  

The subsurface target classification of ground penetrating radar (GPR) is a popular topic in the field of geophysics. Among the existing classification methods, geometrical features and polarimetric attributes of targets are primarily used. As polarimetric attributes contain more information of targets, polarimetric decomposition methods, such as H-Alpha decomposition, have been developed for target classification of GPR in recent years. However, the classification template used in H-Alpha classification is preset depending on the experience of synthetic aperture radar (SAR); therefore, it may not be suitable for GPR. Moreover, many existing classification methods require excessive human operation, particularly when outliers exist in the sample (the data set containing the features of targets); therefore, they are not efficient or intelligent. We herein propose a new machine learning method based on sample centers, i.e., particle center supported plane (PCSP). The sample center is defined as the point with the smallest sum of distances from all points in the same sample, which is considered as a better representation of the sample without significant effect of the outliers. In this proposed method, particle swarm optimization (PSO) is performed to obtain the sample centers; the new criterion for subsurface target classification is achieved. We applied this algorithm to full polarimetric GPR data measured in the laboratory and outdoors. The results indicate that, comparing with support vector machine (SVM) and classical H-Alpha classification, this new method is more efficient and the accuracy is relatively high.


Sign in / Sign up

Export Citation Format

Share Document