Classification method of marine target motion pattern based on spatial-temporal trajectories

Author(s):  
Baichen Jiang ◽  
Wei Zhou ◽  
Jian Guan ◽  
Jialong Jin

Classifying the motion pattern of marine targets is of important significance to promote target surveillance and management efficiency of marine area and to guarantee sea route safety. This paper proposes a moving target classification algorithm model based on channel extraction-segmentation-LCSCA-lp norm minimization. The algorithm firstly analyzes the entire distribution of channels in specific region, and defines the categories of potential ship motion patterns; on this basis, through secondary segmentation processing method, it obtains several line segment trajectories as training sample sets, to improve the accuracy of classification algorithm; then, it further uses the Leastsquares Cubic Spline Curves Approximation (LCSCA) technology to represent the training sample sets, and builds a motion pattern classification sample dictionary; finally, it uses lp norm minimized sparse representation classification model to realize the classification of motion patterns. The verification experiment based on real spatial-temporal trajectory dataset indicates that, this method can effectively realize the motion pattern classification of marine targets, and shows better time performance and classification accuracy than other representative classification methods.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chun Huang ◽  
Diao Shen

The music performance system works by identifying the emotional elements of music to control the lighting changes. However, if there is a recognition error, a good stage effect will not be able to create. Therefore, this paper proposes an intelligent music emotion recognition and classification algorithm in the music performance system. The first part of the algorithm is to analyze the emotional features of music, including acoustic features, melody features, and audio features. Then, the three kinds of features are combined together to form a feature vector set. In the latter part of the algorithm, it divides the feature vector set into training samples and test samples. The training samples are trained by using recognition and classification model based on the neural network. And then, the testing samples are input into the trained model, which is aiming to realize the intelligent recognition and classification of music emotion. The result shows that the kappa coefficient k values calculated by the proposed algorithm are greater than 0.75, which indicates that the recognition and classification results are consistent with the actual results, and the accuracy of recognition and classification is high. So, the research purpose is achieved.


2011 ◽  
Vol 36 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Hemanta Saikia ◽  
Dibyojyoti Bhattacharjee

An all-rounder can take an imperative role in any version of the game of cricket, whether it is a test match or any other limited-over format of the game. The study classifies the performance of all-rounders who participated in IPL based on their strike rate and economy rate. Based on the factors mentioned, the all-rounders can be divided into four non-overlapping classes, viz., Performer, Batting All-rounder, Bowling All-rounder, and Under-performer. Several predictor variables that are supposed to influence the performance of all-rounders are considered. Step-wise multinomial logistic regression (SMLR) is used to identify the significant predictors. Samples of six incumbent all-rounders who had not participated in the first three seasons of IPL are considered. The significant predictors were then used to predict the expected class of an incumbent all-rounder using naive Bayesian classification model. The relevant data were collected from the websites, www.cricinfo.org and www.cricketnirvana.com. The key points of this study are as follows: The training sample is populated with 35 all-rounders who had performed in the first three seasons of IPL. Two variables, viz., strike rate (number of runs scored per 100 balls faced) and economy rate (average number of runs scored per over against the bowler) are used to classify the all-rounders as follows: Performer: An all-rounder with strike rate above median and economy rate below median. Batting All-rounder: An all-rounder with strike rate above median and economy rate above median. Bowling All-rounder: An all-rounder with strike rate below median and economy rate below median. Under-performer: An all-rounder with strike rate below median and economy rate above median. The step-wise multinomial logistic regression (SMLR) was used to identify the significant variables that are actually responsible for classification of the all-rounders. The strike rate in ODI, strike rate in Twenty-20, economy rate in ODI, economy rate in Twenty-20 and bowling type (Spin or Fast) of the all-rounders are found to be significant in determining the class of an all-rounder. The naive Bayesian classification model is used for forecasting the expected class of allrounders based on the significant predictors for six incumbent all-rounders who had played only in fourth season of IPL. The prediction done before IPL IV was then compared with the actual situation at the end of the tournament. It is found that four predictions were performed correctly out of the six. This model would be useful for the participating teams' management while deciding the bid of an all-rounder in the upcoming season of IPL as per their requirement.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 292
Author(s):  
Wenshu Lin ◽  
Weiwei Fan ◽  
Haoran Liu ◽  
Yongsheng Xu ◽  
Jinzhuo Wu

Handheld mobile laser scanning (HMLS) can quickly acquire point cloud data, and has the potential to conduct forest inventory at the plot scale. Considering the problems associated with HMLS data such as large discreteness and difficulty in classification, different classification models were compared in order to realize efficient separation of stem, branch and leaf points from HMLS data. First, the HMLS point cloud was normalized and ground points were removed, then the neighboring points were identified according to three KNN algorithms and eight geometric features were constructed. On this basis, the random forest classifier was used to calculate feature importance and perform dataset training. Finally, the classification accuracy of different KNN algorithms-based models was evaluated. Results showed that the training sample classification accuracy based on the adaptive radius KNN algorithm was the highest (0.9659) among the three KNN algorithms, but its feature calculation time was also longer; The validation accuracy of two test sets was 0.9596 and 0.9201, respectively, which is acceptable, and the misclassification mainly occurred in the branch junction of the canopy. Therefore, the optimal classification model can effectively achieve the classification of stem, branch and leaf points from HMLS point cloud under the premise of comprehensive training.


2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 371
Author(s):  
Yerin Lee ◽  
Soyoung Lim ◽  
Il-Youp Kwak

Acoustic scene classification (ASC) categorizes an audio file based on the environment in which it has been recorded. This has long been studied in the detection and classification of acoustic scenes and events (DCASE). This presents the solution to Task 1 of the DCASE 2020 challenge submitted by the Chung-Ang University team. Task 1 addressed two challenges that ASC faces in real-world applications. One is that the audio recorded using different recording devices should be classified in general, and the other is that the model used should have low-complexity. We proposed two models to overcome the aforementioned problems. First, a more general classification model was proposed by combining the harmonic-percussive source separation (HPSS) and deltas-deltadeltas features with four different models. Second, using the same feature, depthwise separable convolution was applied to the Convolutional layer to develop a low-complexity model. Moreover, using gradient-weight class activation mapping (Grad-CAM), we investigated what part of the feature our model sees and identifies. Our proposed system ranked 9th and 7th in the competition for these two subtasks, respectively.


Sign in / Sign up

Export Citation Format

Share Document