The Consistent Second-Order Wave Theory and Its Application to a Submerged Spheroid
Because of the recognized inadequacy of first-order linearized surface-wave theory, the author has developed, for a three-dimensional body, a new second-order theory which provides a better description of free-surface phenomena. The new theory more accurately satisfies the kinematic boundary condition on the solid wall, and takes into account the nonlinearity of the condition at the free surface. The author applies the new theory to a submerged spheroid, to calculate wave resistance. Experiments were conducted to verify the theory, and their results are compared with the theoretical results. The comparison indicates that the use of the new theory leads to more accurate prediction of wave resistance.