On higher-order wave theory for submerged two-dimensional bodies

1969 ◽  
Vol 38 (2) ◽  
pp. 415-432 ◽  
Author(s):  
Nils Salvesen

The importance of non-linear free-surface effects on potential flow past two-dimensional submerged bodies is investigated by the use of higher-order perturbation theory. A consistent second-order solution for general body shapes is derived. A comparison between experimental data and theory is presented for the free-surface waves and for the wave resistance of a foil-shaped body. The agreement is good in general for the second-order theory, while the linear theory is shown to be inadequate for predicting the wave drag at the relatively small submergence treated here. It is also shown, by including the third-order freesurface effects, how the solution to the general wave theory breaks down at low speeds.

1988 ◽  
Vol 32 (02) ◽  
pp. 83-91
Author(s):  
X. M. Wang ◽  
M. L. Spaulding

A two-dimensional potential flow model is formulated to predict the wave field and forces generated by a sere!submerged body in forced heaving motion. The potential flow problem is solved on a boundary fitted coordinate system that deforms in response to the motion of the free surface and the heaving body. The full nonlinear kinematic and dynamic boundary conditions are used at the free surface. The governing equations and associated boundary conditions are solved by a second-order finite-difference technique based on the modified Euler method for the time domain and a successive overrelaxation (SOR) procedure for the spatial domain. A series of sensitivity studies of grid size and resolution, time step, free surface and body grid redistribution schemes, convergence criteria, and free surface body boundary condition specification was performed to investigate the computational characteristics of the model. The model was applied to predict the forces generated by the forced oscillation of a U-shaped cylinder. Numerical model predictions are generally in good agreement with the available second-order theories for the first-order pressure and force coefficients, but clearly show that the third-order terms are larger than the second-order terms when nonlinearity becomes important in the dimensionless frequency range 1≤ Fr≤ 2. The model results are in good agreement with the available experimental data and confirm the importance of the third order terms.


1984 ◽  
Vol 28 (01) ◽  
pp. 55-64
Author(s):  
Colen Kennell ◽  
Allen Plotkin

This research addresses the potential flow about a thin two-dimensional hydrofoil moving with constant velocity at a fixed depth beneath a free surface. The thickness-to-chord ratio of the hydrofoil and disturbances to the free stream are assumed to be small. These small perturbation assumptions are used to produce first-and second-order subproblems structured to provide consistent approximations to boundary conditions on the body and the free surface. Nonlinear corrections to the free-surface boundary condition are included at second order. Each subproblem is solved by a distribution of sources and vortices on the chord line and doublets on the free surface. After analytic determination of source and doublet strengths, a singular integral equation for the vortex strength is derived. This integral equation is reduced to a Fredholm integral equation which is solved numerically. Lift, wave drag, and free-surface shape are calculated for a flat plate and a Joukowski hydrofoil. The importance of free-surface effects relative to body effects is examined by a parametric variation of Froude number and depth of submergence.


1970 ◽  
Vol 14 (01) ◽  
pp. 23-50
Author(s):  
Young H. Chey

Because of the recognized inadequacy of first-order linearized surface-wave theory, the author has developed, for a three-dimensional body, a new second-order theory which provides a better description of free-surface phenomena. The new theory more accurately satisfies the kinematic boundary condition on the solid wall, and takes into account the nonlinearity of the condition at the free surface. The author applies the new theory to a submerged spheroid, to calculate wave resistance. Experiments were conducted to verify the theory, and their results are compared with the theoretical results. The comparison indicates that the use of the new theory leads to more accurate prediction of wave resistance.


1968 ◽  
Vol 12 (04) ◽  
pp. 313-327
Author(s):  
Choung Mook Lee

A second-order potential solution is sought for a two-dimensional symmetric cylinder placed horizontally in a free surface and forced to oscillate vertically. The forced motion is simple harmonic, and the amplitude is small compared to the beam of the cylinder. The resulting potential-theory problem is solved by placing singularities of all orders at the intersection of the water surface at rest with the vertical axis of symmetry, and by determining their strengths from the boundary condition on the body. The pressure distribution on the cylinder, the force acting upon it, and the waves generated by it are derived through the second order. Numerical computations are made for a circular cylinder and for a U-shaped cylinder, and the results are presented in graphs.


Author(s):  
Samir Hassan Sadek ◽  
Mehmet Yildiz

This work presents the development of both weakly compressible and incompressible Smoothed Particle Hydrodynamics (SPH) models for simulating two-dimensional transient viscoelastic free surface flow which has extensive applications in polymer processing industries. As an illustration with industrial significance, we have chosen to model the extrudate swell of a second-order polymeric fluid. The extrudate or die swell is a phenomenon that takes place during the extrusion of polymeric fluids. When a polymeric fluid is forced through a die to give a polymer its desired shape, due to its viscoelastic non-Newtonian nature, it shows a tendency to swell or contract at the die exit depending on its rheological parameters. The die swell phenomenon is a typical example of a free surface problem where the free surface is formed at the die exit after the polymeric fluid has been extruded. The swelling process leads to an undesired increase in the dimensions of the extrudate. To be able to obtain a near-net shape product, the flow in the extrusion process should be well-understood to shed some light on the important process parameters behind the swelling phenomenon. To this end, a systematic study has been carried out to compare constitutive models proposed in literature for second-order fluids in terms of their ability to capture the physics behind the swelling phenomenon. The effect of various process and rheological parameters on the die swell such as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have also been investigated. The models developed here can predict both swelling and contraction of the extrudate successfully. The die swell problem was solved for a wide range of Deborah numbers and for two different Re numbers. The numerical model was validated through the solution of fully developed Newtonian and Non-Newtonian viscoelastic flows in a two-dimensional channel, and the results of these two benchmark problems were compared with analytic solutions, and good agreements were obtained.


2011 ◽  
Vol 23 (7) ◽  
pp. 072101 ◽  
Author(s):  
Osama Ogilat ◽  
Scott W. McCue ◽  
Ian W. Turner ◽  
John A. Belward ◽  
Benjamin J. Binder

1978 ◽  
Vol 22 (04) ◽  
pp. 203-211
Author(s):  
Nils Salvesen ◽  
C. von Kerczek

Some nonlinear aspects of the two-dimensional problem of a submerged body moving with constant speed in otherwise undisturbed water of uniform depth are considered. It is shown that a theory of Benjamin which predicts a uniform rise of the free surface ahead of the body and the lowering of the mean level of the waves behind it agrees well with experimental data. The local steady-flow problem is solved by a numerical method which satisfies the exact free-surface conditions. Third-order perturbation formulas for the downstream free waves are also presented. It is found that in sufficiently shallow water, the wavelength increases with increasing disturbance strength for fixed values of the free-stream-Froude number. This is opposite to the deepwater case where the wavelength decreases with increasing disturbance strength.


Author(s):  
Xiang Yuan Zheng ◽  
Torgeir Moan ◽  
Ser Tong Quek

The one-dimensional Fast Fourier Transform (FFT) has been extensively applied to efficiently simulate Gaussian wave elevation and water particle kinematics. The actual sea elevation/kinematics exhibit non-Gaussianities that mathematically can be represented by the second-order random wave theory. The elevation/kinematics formulation contains double-summation frequency sum and difference terms which in computation make the dynamic analysis of offshore structural response prohibitive. This study aims at a direct and efficient two-dimensional FFT algorithm for simulating the frequency sum terms. For the frequency difference terms, inverse FFT and FFT are respectively implemented across the two dimensions of the wave interaction matrix. Given specified wave conditions, not only the wave elevation but kinematics and associated Morison force are simulated. Favorable agreements are achieved when the statistics of elevation/kinematics are compared with not only the empirical fits but the analytical solutions developed based on modified eigenvalue/eigenvector approach, while the computation effort is very limited. In addition, the stochastic analyses in both time-and frequency domains show that the near-surface Morison force and induced linear oscillator response exhibits stronger non-Gaussianities by involving the second-order wave effects.


1988 ◽  
Vol 189 ◽  
pp. 301-310 ◽  
Author(s):  
Susan Cole

This paper describes the induced pressure distribution, free-surface waves, vortical flow and wave drag of an exact solution of low-aspect-ratio flat-ship theory. An energy balance is derived which relates the spray drag, the energy carried away by the far-field waves and the vortical flow to the total wave drag.


Sign in / Sign up

Export Citation Format

Share Document