scholarly journals Computation of the Hydrodynamic Forces Induced by General Vibration of Cylinders

1979 ◽  
Vol 23 (01) ◽  
pp. 9-19
Author(s):  
William C. Webster

The hydrodynamic pressures created by the arbitrary deformation around the girth of a two-dimensional section are computed in a form suitable for finite-element structural analysis. The computations are based on the panel method developed by Frank (1976) for determining the hydrodynamic forces on rigid sections. In this method the section is approximated by straight-line segments on each of which source singularities of constant strength are distributed. The source strengths are determined by matching the kinematic boundary condition at the center of each panel. Frank's method is extended to treat nonrigid-body deformations of an infinite cylinder, including deformations which are also periodically varying in the longitudinal direction. The results show that these hydrodynamic pressures are quite dependent on the shape of the deformation pattern and are extremely sensitive to the longitudinal periodicity.

2014 ◽  
Vol 24 (01) ◽  
pp. 61-86 ◽  
Author(s):  
STEFAN HUBER ◽  
MARTIN HELD ◽  
PETER MEERWALD ◽  
ROLAND KWITT

Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques.


Geophysics ◽  
1984 ◽  
Vol 49 (6) ◽  
pp. 787-795 ◽  
Author(s):  
R. O. Hansen ◽  
Y. Miyazaki

An equivalent source algorithm is described for continuing either one‐ or two‐dimensional potential fields between arbitrary surfaces. In the two‐dimensional case, the dipole surface is approximated as a set of plane faces with constant moments over each face. In the one‐dimensional case, the plane faces of the dipole surface reduce to straight line segments. Application of the algorithm to model and field examples of aeromagnetic data shows the method to be effective and accurate even when the terrain has strong topographic relief and is composed of highly magnetic volcanic rocks.


1958 ◽  
Vol 4 (6) ◽  
pp. 600-606 ◽  
Author(s):  
G. Power ◽  
P. Smith

A set of two-dimensional subsonic flows past certain cylinders is obtained using hodograph methods, in which the true pressure-volume relationship is replaced by various straight-line approximations. It is found that the approximation obtained by a least-squares method possibly gives best results. Comparison is made with values obtained by using the von Kármán-Tsien approximation and also with results obtained by the variational approach of Lush & Cherry (1956).


2000 ◽  
Vol 43 (4) ◽  
pp. 437-440 ◽  
Author(s):  
Carlos Sérgio Agostinho

The viability of an alternative method for estimating the size at sexual maturity of females of Plagioscion squamosissimus (Perciformes, Sciaenidae) was analyzed. This methodology was used to evaluate the size at sexual maturity in crabs, but has not yet been used for this purpose in fishes. Separation of young and adult fishes by this method is accomplished by iterative adjustment of straight-line segments to the data for length of the otolith and length of the fish. The agreement with the estimate previously obtained by another technique and the possibility of calculating the variance indicates that in some cases, the method analyzed can be used successfully to estimate size at sexual maturity in fish. However, additional studies are necessary to detect possible biases in the method.


2009 ◽  
Vol 19 (02) ◽  
pp. 545-555 ◽  
Author(s):  
F. TRAMONTANA ◽  
L. GARDINI ◽  
D. FOURNIER-PRUNARET ◽  
P. CHARGE

We consider the class of two-dimensional maps of the plane for which there exists a whole one-dimensional singular set (for example, a straight line) that is mapped into one point, called a "knot point" of the map. The special character of this kind of point has been already observed in maps of this class with at least one of the inverses having a vanishing denominator. In that framework, a knot is the so-called focal point of the inverse map (it is the same point). In this paper, we show that knots may also exist in other families of maps, not related to an inverse having values going to infinity. Some particular properties related to focal points persist, such as the existence of a "point to slope" correspondence between the points of the singular line and the slopes in the knot, lobes issuing from the knot point and loops in infinitely many points of an attracting set or in invariant stable and unstable sets.


Author(s):  
Lixin He ◽  
Jing Yang ◽  
Bin Kong ◽  
Can Wang

It is one of very important and basic problem in compute vision field that recovering depth information of objects from two-dimensional images. In view of the shortcomings of existing methods of depth estimation, a novel approach based on SIFT (the Scale Invariant Feature Transform) is presented in this paper. The approach can estimate the depths of objects in two images which are captured by an un-calibrated ordinary monocular camera. In this approach, above all, the first image is captured. All of the camera parameters remain unchanged, and the second image is acquired after moving the camera a distance d along the optical axis. Then image segmentation and SIFT feature extraction are implemented on the two images separately, and objects in the images are matched. Lastly, an object depth can be computed by the lengths of a pair of straight line segments. In order to ensure that the best appropriate a pair of straight line segments are chose and reduce the computation, the theory of convex hull and the knowledge of triangle similarity are employed. The experimental results show our approach is effective and practical.


Author(s):  
A. Etemadi ◽  
J. P. Schmidt ◽  
G. Matas ◽  
J. Illingworth ◽  
J. Kittler

Sign in / Sign up

Export Citation Format

Share Document