Performance Simulation of Marine Diesel Engines with SELENDIA

1999 ◽  
Vol 43 (04) ◽  
pp. 201-217
Author(s):  
P. Chesse ◽  
B. Inozu ◽  
P. Roy ◽  
X. Tauzia ◽  
J. F. Hetet

This paper describes a diesel engine simulation code, named SELENDIA, jointly developed by EcoleCentrale de Nantes, France, and the University of New Orleans. The adopted models for steady-state and transient response simulation are briefly introduced in addition to various validation results. The capabilities of the code are illustrated by a study regarding the transient response of a sequentially turbocharged marine diesel engine as well as the simulation of engine performance under extreme conditions and the investigation of engine pollutant emissions.

2004 ◽  
Vol 41 (03) ◽  
pp. 95-101
Author(s):  
P. Chesse ◽  
D. Chalet ◽  
X. Tauzia ◽  
J. F. Hetet ◽  
B. Inozu

This paper presents a marine diesel engine simulation code designed for real-time performance. The main novelty is that the various equations are derived from the laws of thermodynamics, thus guaranteeing qualitatively accurate predictions and allowing for easy use with any type of engine. The code is based on the "filling and emptying" method with various simplifications to achieve real-time performance. A number of failure models were added to interface the code with a propulsion training application. This was done in order to educate crews on failure detection and the management of emergencies.


Author(s):  
Ioannis Vlaskos ◽  
Ennio Codan ◽  
Nikolaos Alexandrakis ◽  
George Papalambrou ◽  
Marios Ioannou ◽  
...  

The paper describes the design process for a controlled pulse turbocharging system (CPT) on a 5 cylinder 4-stroke marine engine and highlights the potential for improved engine performance as well as reduced smoke emissions under steady state and transient operating conditions, as offered by the following technologies: • controlled pulse turbocharging, • high pressure air injection onto the compressor impeller as well as into the air receiver, and • an electronic engine control system, including a hydraulic powered electric actuator. Calibrated engine simulation computer models based on the results of tests performed on the engine in its baseline configuration were used to design the CPT components. Various engine tests with CPT under steady state and transient operating conditions show the engine optimization process and how the above-mentioned technologies benefit engine behavior in both generator and propeller law operation.


2021 ◽  
pp. 146808742110692
Author(s):  
Zhenyu Shen ◽  
Yanjun Li ◽  
Nan Xu ◽  
Baozhi Sun ◽  
Yunpeng Fu ◽  
...  

Recently, the stringent international regulations on ship energy efficiency and NOx emissions from ocean-going ships make energy conservation and emission reduction be the theme of the shipping industry. Due to its fuel economy and reliability, most large commercial vessels are propelled by a low-speed two-stroke marine diesel engine, which consumes most of the fuel in the ship. In the present work, a zero-dimensional model is developed, which considers the blow-by, exhaust gas bypass, gas exchange, turbocharger, and heat transfer. Meanwhile, the model is improved by considering the heating effect of the blow-by gas on the intake gas. The proposed model is applied to a MAN B&W low-speed two-stroke marine diesel engine and validated with the engine shop test data. The simulation results are in good agreement with the experimental results. The accuracy of the model is greatly improved after considering the heating effect of blow-by gas. The model accuracy of most parameters has been improved from within 5% to within 2%, by considering the heating effect of blow-by gas. Finally, the influence of blow-by area change on engine performance is analyzed with considering and without considering the heating effect of blow-by.


Author(s):  
M. C. Cameretti ◽  
E. Landolfi ◽  
T. Tesone ◽  
A. Caraceni

The calibration of the engine control unit is increased for the development of the whole automotive system. The aim is to calibrate the electronic engine control to match the decreasing emission requirements and increasing fuel economy demands. The reduction of the number of tests on vehicles represents one of the most important requirements for increasing efficiency of the engine calibration process. However, the definition of the design of experiment is not straightforward because the data is not known beforehand, so it is difficult to process and analyse this data to achieve a globally valid model. To reduce time effort and costs the virtual calibration can be a valid solution. This procedure is called software in the loop (SIL) calibration able to develop a process to systematically identify the optimal balance of engine performance, emissions and fuel economy. In this work, a virtual calibration methodology is presented by using a two-stage model to get minimum exhaust emissions of a diesel engine. The data used are from a GT-Power model of a 3L supercharged diesel engine. The model is able to calculate the engine emissions for different engine parameters (such as the start of injection, EGR fraction and rail pressure) and from optimisation process, new injection start maps that reduce pollutant emissions are created.


Author(s):  
Harsh D. Sapra ◽  
Jaswinder Singh ◽  
Chris Dijkstra ◽  
Peter De Vos ◽  
Klaas Visser

Abstract Underwater exhaust systems are employed on board ships to allow zero direct emissions to the atmosphere with the possibility of drag reduction via exhaust gas lubrication. However, underwater expulsion of exhaust gases imparts high and dynamic back pressure, which can fluctuate in amplitude and time period as a ship operates in varying sea-states depending on its geographical location and weather conditions. Therefore, this research aims to experimentally investigate the performance of a marine diesel engine against varying amplitudes and time periods of dynamic back pressure at different sea-states due to underwater exhaust systems. In this study, a turbocharged, marine diesel engine was tested at different loads along the propeller curve against dynamic back pressure waves produced by controlling an electronic butterfly valve placed in the exhaust line after the turbine outlet. Engine performance was investigated against single and multiple back pressure waves of varying amplitudes and wave periods based on real sea-state conditions and wave data. We found that the adverse effects of dynamic back pressure on engine performance were less severe than those found against static back pressure. Governor control and turbocharger dynamics play an important role in keeping the fuel penalty and thermal loading low against dynamic back pressure. Therefore, a marine engine may be able to handle much higher levels of dynamic back pressures when operating with underwater exhaust systems in higher sea-states.


Brodogradnja ◽  
2016 ◽  
Vol 67 (4) ◽  
pp. 81-90 ◽  
Author(s):  
Danilo Nikolić ◽  
Nada Marstijepović ◽  
Sead Cvrk ◽  
Radmila Gagić ◽  
Ivan Filipović

2015 ◽  
Vol 68 ◽  
pp. 345-354 ◽  
Author(s):  
Achmad Praptijanto ◽  
Aam Muharam ◽  
Arifin Nur ◽  
Yanuandri Putrasari

Author(s):  
T J Rychter ◽  
A Teodorczyk ◽  
C R Stone ◽  
H J Leonard ◽  
N Ladommatos ◽  
...  

A variable compression ratio concept that can give a different expansion ratio to the compression ratio has been evaluated by means of a simulation of a turbocharged diesel engine. The compression ratio is controlled by varying the ratio of the connecting rod length to the crank throw, hence the name variable crank radius/connecting rod length engine (VR/LE). The VR/LE mechanism kinematics have been defined and described, and the compression ratio and expansion ratio have been presented as a function of the eccentric phase angle (αo). A zero-dimensional engine simulation that has been the subject of comprehensive validation has been used as the basis of the VR/LE study. The effect of the compression ratio on the engine performance at fixed loads is presented. The principal benefits are a reduction in fuel consumption at part load of about 2 per cent and a reduction in ignition delay that leads to an estimated 6 dB reduction in combustion noise. The study has been conducted within the assumption of a maximum cylinder pressure of 160 bar.


Sign in / Sign up

Export Citation Format

Share Document