Ultimate Strength of Stiffened Panels With Cracking Damage Under Axial Compression or Tension

2006 ◽  
Vol 50 (03) ◽  
pp. 231-238
Author(s):  
Jeom Kee Paik ◽  
Y. V. Satish Kumar

The aim of the present paper is to investigate the ultimate strength characteristics of a longitudinally stiffened panel with cracking damage and under axial compressive or tensile loads. A series of nonlinear finite element analyses are undertaken with varying the size and location of cracking damage. A relevant theoretical model for predicting the ultimate strength of the stiffened panel with cracking damage is studied. The insights and results developed from the present study will be very useful for the ultimate limit state-based risk or reliability assessment of aging steel plated structures with cracking damage.

2020 ◽  
Vol 8 (8) ◽  
pp. 605 ◽  
Author(s):  
Do Kyun Kim ◽  
Su Young Yu ◽  
Hui Ling Lim ◽  
Nak-Kyun Cho

This research aims to study the ultimate limit state (ULS) behaviour of stiffened panel under longitudinal compression by a non-linear finite element method (NLFEM). There are different types of stiffeners mainly being used in shipbuilding, i.e., T-bar, flat-bar, and angle-bar. However, this research focuses on the ultimate compressive strength behaviour of flat-bar stiffened panel. A total of 420 reliable scenarios of flat-bar stiffened panel were selected for numerical simulation by the ANSYS NLFEM. The ultimate strength behaviours obtained were used as data for the development of closed form shape empirical formulation. Recently, our group proposed an advanced empirical formulation for T-bar stiffened panel, and the applicability of the proposed formulation to flat-bar stiffened panel is confirmed by this study. The accuracy of the empirical formulation obtained for flat-bar stiffened panel was validated by finite element (FE) simulation results of statistical analysis (R2 = 0.9435). The outcome obtained will be useful for ship structural designers in predicting the ultimate strength performance of flat-bar type stiffened panel under longitudinal compression.


Author(s):  
Do Kyun Kim ◽  
Su Young Yu ◽  
Hui Ling Lim ◽  
Nak-Kyun Cho

This research aims to study the ultimate limit state (ULS) behaviour of stiffened panel under longitudinal compression by non-linear finite element method (NLFEM). There are different types of stiffeners being used in shipbuilding i.e. T-bar, flat-bar and angle-bar. However, this research focuses on the ultimate compressive strength behaviour of flat-bar stiffened panel. A total of 420 of reliable scenarios of flat-bar stiffened panel are selected for numerical simulation by ANSYS NLFEM. The ultimate strength behaviours obtained were used as data for the development of closed form shape empirical formulation. Recently, Kim et al. [1] proposed for advanced empirical formulation for T-bar stiffened panel and the applicability of the proposed formulation to flat-bar stiffened panel will be confirmed by this study. The accuracy of the empirical formulation obtained for flat-bar stiffened panel has been validated by FE simulation results of statistical analysis (R2 = 0.9435). The outcome obtained will be useful for ship structural designers in predicting the ultimate strength performance of flat-bar type stiffened panel under longitudinal compression.


2005 ◽  
Author(s):  
Jeom Kee Paik ◽  
Owen F. Hughes ◽  
Paul E. Hess ◽  
Celine Renaud

The present paper is a summary of recent research and developments related to some core ultimate limit state (ULS) technologies for design and strength assessment of aluminum multi-hull ship structures, jointly undertaken by Pusan National University, Virginia Tech, U.S. Naval Surface Warfare Center and Alcan Marine. An extensive study on the subject has been undertaken by the authors theoretically, numerically and experimentally. Methods to analyze hull girder loads / load effects, stiffened panel ultimate strength and hull girder ultimate strength of aluminum multi-hull ship structures are developed in the present study. Application examples of the methodologies for the ULS structural design and strength assessment of a hypothetical 120m long all aluminum catamaran fast ship structure are presented. Important insights and conclusions developed from the present study are summarized. Some of the comparisons have shown that 5383 called Sealium (a patented Alcan Marine alloy) is superior to the standard aluminum alloy 5083 in terms of material properties, ULS characteristics and welding performance. It is our hope that the methods developed from the present study will be useful for ULS design and strength assessment of aluminum multi-hull ship structures.


Author(s):  
Jeom Kee Paik ◽  
Jung Kwan Seo ◽  
Jae Myung Lee ◽  
Jae Hyung Park

The Capesize bulk carrier, M.V. Derbyshire, sank in the North West Pacific during typhoon Orchid in September 1980 when she was on a voyage from Canada to Japan carrying fine iron ore concentrates. Since then, extensive investigations of the vessel sinking have previously been made in the literature primarily by the formal safety assessment (FSA) technique to explore the loss causes, but serious speculation on the failure of hull structures has been lacking in such investigations. The present paper investigates the possibility of the vessel sinking initiated by the failure of hull structures rather than by other loss scenarios such as hatch cover failure subsequent to water ingress into the cargo holds. Ultimate limit state assessments of individual stiffened panels and hulls of the M.V. Derbyshire under extreme bending moments during the last voyage in storm are made using ALPS/ULSAP and ALPS/HULL computer programs. It is concluded that the M.V. Derbyshire could have sunk by hull girder collapse with or even without unintended water ingress into cargo holds. Important insights and findings developed from the present study are summarized.


2020 ◽  
Vol 27 (3) ◽  
pp. 50-58 ◽  
Author(s):  
Ozgur Ozguc

AbstractStiffened plates are the main structural building block in ship and offshore hulls and their structural response subject to loads is a topic of significant practical interest in ship and offshore structural design. To investigate the structural capacity for design and evaluation purposes, it is becoming an efficient and reliable practice to carry out non-linear finite element (FE) analysis. The present study is to assess the buckling strength of a stiffened deck panel on an FPSO vessel using the nonlinear finite element code ADVANCE ABAQUS, where imperfection sensitivity work is also accounted for. The cases studied correspond to in-plane bi-axial compression in the two orthogonal directions. The findings are compared with the DNVGL PULS (Panel Ultimate Limit State) buckling code for the stiffened panels. It is found that the strength values from the ADVANCE ABAQUS and DNVGL PULS code are very close. The results and insights developed from the present work are discussed in detail.


2001 ◽  
Vol 38 (01) ◽  
pp. 9-25
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Bong Ju Kim

The aim of the present study is to develop more advanced design formulations for the ultimate strength of ship plating than available at present. Plate ultimate strength subject to any combination of the following four load components—longitudinal compression/tension, transverse compression/tension, edge shear, and lateral pressure loads—is addressed. The developed formulations are designed to be more sophisticated than existing theoretically based simplified methods. The influence of post-weld initial imperfections in the form of initial deflections and residual stresses is taken into account. It has been previously recognized that a single ultimate strength interaction equation cannot successfully represent the ultimate limit state of long and/or wide plating under all possible combinations of load components involved. This is due to the fact that the collapse behavior of the long and/or wide plating depends primarily on the predominant load components, implying that more than one strength interaction formulations may be needed to more properly predict the plate ultimate limit state. In this regard, the present study derives three sets of ultimate strength formulations for the long and/or wide plating under the corresponding primary load by treating lateral pressure as a secondary dead load. The ultimate strength interaction formula under all of the load components involved is then derived by a relevant combination of the individual strength formulas. The validity of the proposed ultimate strength equations is studied by comparison with nonlinear finite-element analyses and other numerically based solutions.


Author(s):  
Jeom Kee Paik ◽  
Jung Kwan Seo ◽  
Bong Ju Kim

The Capesize bulk carrier, M.V. Derbyshire, sank in the North West Pacific during typhoon Orchid in September 1980 when she was on a voyage from Canada to Japan carrying fine iron ore concentrates. Since then, extensive investigations of the vessel sinking have previously been made in the literature primarily by the formal safety assessment technique to explore the loss causes, but serious speculation on the failure of hull structures has been lacking in such investigations. The present paper investigates the possibility of the vessel sinking initiated by the failure of hull structures rather than by other loss scenarios, such as hatch cover failure subsequent to water ingress into the cargo holds. Ultimate limit state assessments of individual stiffened panels and hulls of the M.V. Derbyshire under extreme bending moments during the last voyage in storm are made using ALPS/ULSAP and ALPS/HULL computer programs. It is concluded that the M.V. Derbyshire could have sunk by hull girder collapse with or even without unintended water ingress into cargo holds. Important insights and findings developed from the present study are summarized.


Sign in / Sign up

Export Citation Format

Share Document