Modeling of Finite-span Ram Wings Moving Above Water at Finite Froude Numbers

2014 ◽  
Vol 58 (03) ◽  
pp. 146-156
Author(s):  
Konstantin I. Matveev

Power-augmented ram wings can be used for very fast transportation of heavy cargo over water and relatively flat solid surfaces. This article describes a coupled aerohydrodynamic model for a ram wing in steady forward motion. Effects of a finite wingspan and finite Froude numbers are accounted for by the extreme ground effect theory for airflow and a linearized potential flow theory for water. Representative results showing the influence of several variable parameters of the vehicle geometry and operational regimes are demonstrated for a selected ram-wing configuration. The developed method can be applied for modeling of airborne lifting surfaces operating in the strong ground effect on a variety of fast marine craft.

1967 ◽  
Vol 89 (3) ◽  
pp. 503-511 ◽  
Author(s):  
A. Shabaik ◽  
S. Kobayashi ◽  
E. G. Thomsen

Theoretical and experimental flow fields of several extrusion ratios of lead in plane strain were compared. It was found that, for extrusion ratios where dead metal exists, the agreement between the potential and experimental flow nets was better for small reductions when a modified boundary approaching a flow line was used. It was also found that when the flow changed direction gradually, the potential flow net was in good agreement with the experimental one. The solution obtained is unique and complete.


Author(s):  
C-E Janson

A potential-flow panel method is used to compute the waves and the lift force from surface-piercing and submerged bodies. In particular the interaction between the waves and the lift produced close to the free surface is studied. Both linear and non-linear free-surface boundary conditions are considered. The potential-flow method is of Rankine-source type using raised source panels on the free surface and a four-point upwind operator to compute the velocity derivatives and to enforce the radiation condition. The lift force is introduced as a dipole distribution on the lifting surfaces and on the trailing wake, together with a flow tangency condition at the trailing edge of the lifting surface. Different approximations for the spanwise circulation distribution at the free surface were tested for a surface-piercing wing and it was concluded that a double-model approximation should be used for low speeds while a single-model, which allows for a vortex at the free surface, was preferred at higher speeds. The lift force and waves from three surface-piercing wings, a hydrofoil and a sailing yacht were computed and compared with measurements and good agreement was obtained.


2013 ◽  
Vol 29 (01) ◽  
pp. 17-24
Author(s):  
Konstantin I. Matveev ◽  
Nikolai Kornev

Aerodynamic support is beneficial for achieving very high speeds of marine transportation. Wing-in-ground vehicles, power-augmented ram platforms, and ultrafast planing multihulls are examples of marine craft with air assistance. The main technical problems in the development and application of these concepts for marine transportation are to ensure motion stability and to provide adequate seaworthiness. In this article, we illustrate applications of several mathematical models for various air supported marine vehicle concepts and discuss their specific stability issues. The aerodynamic submodels are based on nonlinear vortex-lattice methods and on the extreme ground effect theory, whereas unsteady hydrodynamics of planing surfaces are treated with added-mass strip theories. The static and dynamic stability in the vicinity of equilibrium states can be analyzed by linearized approaches. However, motions in transient regimes and unsteady environments require implementation of nonlinear and fully unsteady modeling methods.


2016 ◽  
Author(s):  
Lilan Zhou ◽  
Ji Yang ◽  
Qian Wang ◽  
Jiangtao Qin

Waves generated by passing ships have potential adverse impacts on the environment (beach erosion, ecological disturbance, structures damage) and other waterway users (navigations, moored ships) in the coastal and sheltered areas. But issues related to waves of ships were addressed rarely in China until now. Accurate prediction of wash waves is the first step to control the washes from passing ships and it’s significant to reduce the effects of washes. A coupled method is used in this paper to simulate the washes and its effects caused by the passing ship. A potential flow theory method is adopted as the stationary wave generation model; a non-hydrostatic wave flow model is used as the wave propagation model; a time domain method is chosen as the model for simulating the forces and moments of mooring ship. The waves calculated by a potential flow theory method in the near field are used as the input for the non-hydrostatic wave-flow model to obtain the far field waves. A time-domain representation of the wave-cut at the location of the passing vessel is transformed to the frequency-domain and is used as the input for the diffraction computations. Parts of the calculated results are validated experimentally, satisfactory agreement is demonstrated.


Brodogradnja ◽  
2016 ◽  
Vol 67 (4) ◽  
pp. 109-122
Author(s):  
Ivana Martić ◽  
◽  
Nastia Degiuli ◽  
Ivan Ćatipović

Author(s):  
Konstantin I. Matveev

Power-augmented-ram vehicles represent novel air-assisted marine craft that can be used for high-speed amphibious transportation of heavy cargo. These vehicles rely on combined hydrodynamic and aerodynamic support that is also augmented by front air-based propulsors. Dynamic models for these craft in the presence of wind gusts and surface waves are needed for confident design of these vehicles, including motion control systems. This study addresses 3-DOF vertical-plane dynamics. The models for unsteady forces are based on the aerodynamic extreme-ground-effect theory and hydrodynamic added-mass strip theory. Modeling of the vehicle motions are carried out for cases of head and following wind gusts and waves of low and high amplitudes. Simulation results can be used for determining amplitudes of the vehicle responses, peak accelerations, and forward speed degradation.


2014 ◽  
Vol 644-650 ◽  
pp. 628-631
Author(s):  
Ke Yi Li ◽  
Zhong Cai Pei

When the bubble moves in the vicinity of a free surface, the movement will be affected by the buoyancy and the Bjerknes effect. Blake and Gibson proposed the criterion which determined the motion direction of the jet and the dynamics of bubble. They proposed the jet wouldn’t be formed in the condition that . Based on the potential flow theory, boundary element method (BEM) is used to calculate three typical examples in this paper in order to study the dynamics of the bubble under the combined action of the Bjerknes effect of the free surface and the buoyancy. It is found out during the analysis that the Blake criterion is applicable to predict the conditions that and .


Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Chul H. Jo

Abstract In this study, a latching control strategy was utilized to increase the efficiency of a heaving buoy-type point absorber with a hydraulic Power take-off (PTO) system. For this purpose, the hydrodynamic performance of a floating buoy was analyzed based on the potential flow theory and Cummins equation. Nonlinear Froude-Krylov (FK) force according to instantaneous wetted surface of a buoy was calculated by a theoretical solution. The effect of the latching control on a point absorber was evaluated by considering PTO performance with hydrodynamic coefficients including nonlinear FK force. The hydraulic PTO system was modeled as an approximate coulomb damping force.


Sign in / Sign up

Export Citation Format

Share Document