Lifetime Enhancement of Propulsion Shafts Against Corrosion-Fatigue by Laser Peening

2018 ◽  
Author(s):  
Lloyd A. Hackel ◽  
Jon E. Rankin

This paper reports substantially enhanced fatigue and corrosion-fatigue lifetimes of propulsion shaft materials, 23284A steel and 23284A steel with In625 weld overlay cladding, as a result of shot or laser peening. Glass reinforced plastic (GRP) coatings and Inconel claddings are used to protect shafts against general corrosion and corrosion pitting. However salt water leakage penetrating under a GRP can actually enhance pitting leading to crack initiation and growth. Fatigue coupons, untreated and with shot or laser peening were tested, including with simultaneous salt water immersion. Controlled corrosion of the surfaces was simulated with electric discharge machining (EDM) of deep pits enabling evaluation of fatigue and corrosion-fatigue lifetimes. Results specifically show high energy laser peening (HELP) to be a superior solution, improving corrosion-fatigue resistance of shaft and cladding metal, reducing the potential for corrosion pits to initiate fatigue cracks and dramatically slowing crack growth rates. At a heavy loading of 110% of the 23284A steel yield stress and with 0.020 inch deep pits, laser peening increased fatigue life of the steel by 1370% and by 350% in the corrosion-fatigue testing.

CORROSION ◽  
10.5006/2786 ◽  
2018 ◽  
Vol 74 (10) ◽  
pp. 1132-1140 ◽  
Author(s):  
Tao Yang ◽  
Wei-lin Chen ◽  
Guo-qing Gou ◽  
Hong-lei Tian ◽  
Yong Chen

The mechanical properties and corrosion resistance of the stainless steel (SS) corbel decline sharply after the welding process, which may cause serious accidents. Combining with microcharacteristics, mechanical properties, and corrosion properties, mathematic theories were used and an accurate prediction model of the corrosion fatigue life of SS butt joints produced by laser-metal active gas hybrid welding (LMHW) was established. The joints produced by LMHW have good mechanical properties, with the joint strength coefficient a remarkable 89%. In corrosion fatigue testing, corrosion pits will first appear in the weld seam as a result of the microstructural difference, then cracks initiate. Meanwhile, both the higher NaCl concentration and lower stress ratio will promote the anodic dissolution of metal, leading to the reduction and obscuring of fatigue striation features on the fracture surface. This high-accuracy mathematical modeling can help validate the advanced LMHW method and, in turn, facilitates the manufacture of stainless steel corbels in rail vehicles.


2015 ◽  
Vol 22 (3) ◽  
pp. 57-66 ◽  
Author(s):  
Marek Jakubowski

Abstract In the paper has been discussed influence of stresses on general corrosion rate and corrosion pit nucleation rate and growth , whose presence has been questioned by some authors but accepted by most of them. Influence of roughness of pit walls on fatigue life of a plate suffering pit corrosion and presence of the so called „ non-damaging” pits which never lead to initiation of fatigue crack, has been presented. Possibility of prediction of pit-to-crack transition moment by two different ways, i.e. considering a pit a stress concentrator or an equivalent crack, has been analyzed. Also, influence of statistical distribution of depth of corrosion pits as well as anticorrosion protection on fatigue and corrosion fatigue has been described.


2014 ◽  
Vol 891-892 ◽  
pp. 969-973 ◽  
Author(s):  
Yuji Sano ◽  
Kiyotaka Masaki ◽  
Keiichi Hirota

Plane bending fatigue testing was performed to study the fatigue properties of friction stir welded (FSW) 3 mm thick AA6061-T6 aluminum alloy plates. Fatigue cracks propagated with bends and curves on the specimens, showing large deviation from a linear line. This might be reflecting the material flow and microstructure in the weld zone. The fatigue strength of the unwelded base material (BM) was 110 MPa at 107 cycles and FSW deteriorated it to 90 MPa. However, laser peening (LP) restored the degraded fatigue strength up to 120 MPa which is higher than that of the BM.


Sign in / Sign up

Export Citation Format

Share Document