pit nucleation
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 1)

JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 293-298
Author(s):  
Khaled H. Khafagy ◽  
Tarek M. Hatem ◽  
Salah M. Bedair

Author(s):  
K. S. Chan ◽  
J. T. Burns ◽  
M. P. Enright ◽  
J. Moody ◽  
W. Goodrum

Abstract HOTPITS is a set of physics-based modeling tools for treating Type II hot corrosion in Ni-based superalloys. The methodology includes modeling the nucleation, growth, and coalescence of pits and microcracks as a random process, as well as the transition of pits to micrcracks and the propagation of the resulting large crack to failure. In this investigation, critical experiments were performed on coupon and low-cycle fatigue (LCF) specimens in order to validate the hot corrosion and the fatigue models in HOTPITS. The pit nucleation, growth, and coalescence models in HOTPITS including the assumption of a random process are validated by the hot corrosion critical experiments performed at two salt contents. The LCF critical experiments, performed using a marker band protocol, validated the stress concentration factor-based models used to predict the pit-to-crack transition in the HOTPITS tool.


2017 ◽  
Vol 114 (31) ◽  
pp. 8175-8180 ◽  
Author(s):  
Adam V. Subhas ◽  
Jess F. Adkins ◽  
Nick E. Rollins ◽  
John Naviaux ◽  
Jonathan Erez ◽  
...  

Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric CO2 on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of 𝜹13C in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution–precipitation shifts significantly toward a dissolution-dominated mechanism below about Ω= 0.7. Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of CO2 is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid–solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at Ω= 0.7, which we interpret as the onset of homogeneous etch pit nucleation.


2015 ◽  
Vol 22 (3) ◽  
pp. 57-66 ◽  
Author(s):  
Marek Jakubowski

Abstract In the paper has been discussed influence of stresses on general corrosion rate and corrosion pit nucleation rate and growth , whose presence has been questioned by some authors but accepted by most of them. Influence of roughness of pit walls on fatigue life of a plate suffering pit corrosion and presence of the so called „ non-damaging” pits which never lead to initiation of fatigue crack, has been presented. Possibility of prediction of pit-to-crack transition moment by two different ways, i.e. considering a pit a stress concentrator or an equivalent crack, has been analyzed. Also, influence of statistical distribution of depth of corrosion pits as well as anticorrosion protection on fatigue and corrosion fatigue has been described.


2014 ◽  
Vol 61 (6) ◽  
pp. 365-369 ◽  
Author(s):  
Zhouyang Lian ◽  
Dongsheng Chen ◽  
Wuji Wei ◽  
Yongzhang Zhou ◽  
Juncheng Jiang

Purpose – The purpose of this study was to investigate the reason of G105 coated drill-pipes suffering from washout after drilling for 70000–80000 m. Design/methodology/approach – The microstructure, micromorphology and corrosion products near the washout were analyzed by metallurgical microscopy, SEM and EDS. Findings – Results showed the metallographic microstructure of the material was typical tempered sorbite. No fatigue crack was observed. Drill-pipe washout was caused mainly by the inclusion of MnS in steel because of the excess S and by damaged coating, both of which induced pit nucleation and promoted the pitting corrosion process. The corrosion hole extended from the interior to the exterior, which resulted in the fracturing of the external drill-pipe surface under pressure. Originality/value – This paper can give practical help to the selection of drill pipe materials in the future.


2013 ◽  
Vol 344 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Kamran ◽  
F. Hussain ◽  
R. Ahmad ◽  
Tahir Ahmad ◽  
Fahad Riaz

Corrosion rate, corrosion potential and susceptibility to pitting corrosion of a metal are measured using cyclic polarization Direct Current (DC) electrochemical technique. The aim of the present research is to investigate the pit nucleation resistance of polished, ground and passivated surfaces of 316 stainless steels in Ringers solution. The electrochemical cyclic polarization results showed that polished surface gave better pitting resistance as compared to ground surface. It was also observed that passivation treatment gave better pitting resistance to both polished and ground surface of 316 stainless steels in Ringers solution.


2013 ◽  
Vol 21 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Marek Jakubowski

ABSTRACT The present paper is a literature survey focused on a specific kind of corrosion, i.e. pitting corrosion and its influence on fatigue of ship and offshore steels. Mechanisms of a shortand long-term pitting corrosion in marine environment have been described including pit nucleation and growth phases. Some models of pit growth versus time of exposure have been presented. Some factors which influence the pit growth rate have been discussed briefly


Sign in / Sign up

Export Citation Format

Share Document