Use of Polysiloxane Coatings for Topside Applications on US Navy Ships

2014 ◽  
Author(s):  
J. Peter Ault ◽  
Pete Lockwood ◽  
Robert Cloutier ◽  
David Kinee

Polysiloxane coatings are the most recent high performance coatings developed to take advantage of the heat and oxidation resistant properties of silicone-based materials. Commercially available polysiloxane coatings predominately consist of organic-inorganic siloxane materials (though some pure siloxane materials are available). Recently, the US Navy has approved polysiloxane coatings as “High Durability” in their specification for exterior weather resistant coatings (MIL-PRF-24635 Type V and VI). Navy approval comes after over 20 years of industry development of polysiloxane coatings for high performance industrial and marine applications, yet issues remain with their cost-effective implementation in the Navy fleet. This paper will review experiences of the offshore and marine industry with polysiloxane coatings and provide an update on the Navy adoption of the technology.

2015 ◽  
Author(s):  
Manivannan Kandasamy ◽  
Ping C. Wu ◽  
Scott Bartlett ◽  
Loc Nguyen ◽  
Frederick Stern

The US Navy is currently considering the introduction of a Flight III variant beginning with DDG-123 in Fiscal Year 2016. The new design incorporates a new combat system and associated power and cooling upgrades. The overall system improvements increase the payload of the ship and the resulting increased displacement has a negative impact on the service life allowance for range, fuel consumption and sea-keeping characteristics. The present objective is to increase the hull displacement without resistance and sea-keeping penalty and with minimal modifications to the baseline DTMB-5415 design (open literature surrogate of the existing DDG-51 hull form) by using retrofitted blisters in the form of side hull expansions and a bow-bulb. The investigation makes use of high-performance CFD computing for analysis of wave cancellation mechanisms. A candidate modified 5415 design with both blisters and bow bulb shows a resistance reduction of ~11% w.r.t.the baseline 5415 in the design speed range of 15-19 knots, even though the displacement is increased by 8%, such that the transport factor is increased by 19%.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Marcos Bavdaz ◽  
Max Collon ◽  
Marco Beijersbergen ◽  
Kotska Wallace ◽  
Eric Wille

Silicon Pore Optics (SPO) is a new X-ray optics technology under development in Europe, forming the ESA baseline technology for the International X-ray Observatory candidate mission studied jointly by ESA, NASA, and JAXA. With its matrix-like structure, made of monocrystalline-bonded Silicon mirrors, it can achieve the required angular resolution and low mass density required for future large X-ray observatories. Glass-based Micro Pore Optics (MPO) achieve modest angular resolution compared to SPO, but are even lighter and have achieved sufficient maturity level to be accepted as the X-ray optic technology for instruments on board the Bepi-Colombo mission, due to visit the planet Mercury. Opportunities for technology transfer to ground-based applications include material science, security and scanning equipment, and medical diagnostics. Pore X-ray optics combine high performance with modularity and economic industrial production processes, ensuring cost effective implementation.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 433
Author(s):  
Izabela S. Pieta ◽  
Agnieszka Lewalska-Graczyk ◽  
Pawel Kowalik ◽  
Katarzyna Antoniak-Jurak ◽  
Mikolaj Krysa ◽  
...  

Within the Waste2Fuel project, innovative, high-performance, and cost-effective fuel production methods are developed to target the “closed carbon cycle”. The catalysts supported on different metal oxides were characterized by XRD, XPS, Raman, UV-Vis, temperature-programmed techniques; then, they were tested in CO2 hydrogenation at 1 bar. Moreover, the V2O5 promotion was studied for Ni/Al2O3 catalyst. The precisely designed hydrotalcite-derived catalyst and vanadia-promoted Ni-catalysts deliver exceptional conversions for the studied processes, presenting high durability and selectivity, outperforming the best-known catalysts. The equilibrium conversion was reached at temperatures around 623 K, with the primary product of reaction CH4 (>97% CH4 yield). Although the Ni loading in hydrotalcite-derived NiWP is lower by more than 40%, compared to reference NiR catalyst and available commercial samples, the activity increases for this sample, reaching almost equilibrium values (GHSV = 1.2 × 104 h–1, 1 atm, and 293 K).


Nanoscale ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 3307-3313 ◽  
Author(s):  
A-Young Kim ◽  
Min Kyu Kim ◽  
Chairul Hudaya ◽  
Ji Hun Park ◽  
Dongjin Byun ◽  
...  

The FTO/NiCr/AgNW hybrid heater exhibits excellent optoelectronic and thermal properties, oxidation-resistance, and high durability over 10 000 bending cycles.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Boris A. Sokolov ◽  
Nikolay N. Tupitsyn

The paper presents results of engineering studies and research and development efforts at RSC Energia to analyze and prove the feasibility of using the mass-produced oxygen-hydrocarbon engine 11D58M with 8.5 ton-force thrust as a basis for development of a high-performance multifunctional rocket engine with oxygen cooling and 5 ton-force thrust, which is optimal for upper stages (US), embodying a system that does not include a gas generator. The multi-functionality of the engine implies including in it additional units supporting some functions that are important for US, such as feeding propellant from US tanks to the engine after flying in zero gravity, autonomous control of the engine automatic equipment to support its firing, shutdown, adjustments during burn and emergency protection in case of off-nominal operation, as well as generating torques for controlling the US attitude and stabilizing it during coasting, etc. Replacing conventional engine chamber cooling that uses high-boiling hydrocarbon fuel with the innovative oxygen cooling makes it possible to get rid of the internal film cooling circuits and eliminate their attendant losses of fuel, while the use of the oxygen gasified in the cooling circuit of the chamber to drive the turbo pump assembly permits to design an engine that does not have a gas generator. Key words: Multifunctional rocket engine, oxygen cooling, gas-generatorless design, upper stage.


Sign in / Sign up

Export Citation Format

Share Document