equilibrium conversion
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 23 (3) ◽  
pp. 43-48
Author(s):  
Roman Valeš ◽  
Bohumír Dvořák ◽  
Jiří Krupka

Abstract This work deals with a study of the effect of temperature on the cyclohexylamine disproportionation to dicyclohexylamine, conjointly with the thermodynamic analysis of this process. The laboratory experiments were carried out in a glass tubular continuous-flow reactor in a gaseous phase at the reaction temperature 433–463 K over a nickel catalyst. The results show, that the temperature has a trifling effect on equilibrium conversion of cyclohexylamine. However, temperature affects the formation of hydrocarbons, benzene and cyclohexane, and dehydrogenation products of dicyclohexylamine, i.e. N-cyclohexylidenecyclohexanamine and N-phenylcyclohexylamine. The latter one is the dominant product of dicyclohexylamine dehydrogenation. The disproportionation of cyclohexylamine has slightly exothermic character. At the experimental reaction temperature range, the cyclohexylamine disproportionation is spontaneous reaction and other reactions of this process are non-spontaneous.


2021 ◽  
Author(s):  
Suresh Kanuri ◽  
Satyapaul A. Singh ◽  
Santanu P. Datta ◽  
Chanchal Chakraborty ◽  
Sounak Roy ◽  
...  

Abstract The most inspiring opportunity to reduce greenhouse gas emissions is direct hydrogenation of CO2 into a commodity of products, which is also an appealing choice for generating renewable energy. CO2 hydrogenation can yield methanol which has a broad range of applications. In the present study, a thermodynamic feasibility analysis of the CO2 hydrogenation reaction is carried out using the Aspen Plus tool. CO2 hydrogenation to methanol, reverse-water-gas-shift (RWGS), and methanol decomposition reactions were considered in this analysis. The effect of different parameters such as temperature (ranging from 50 to 500°C), pressures (ranging from 1 bar to 50 bar), and CO2:H2 molar ratio (ranging from 1:3 to 1:20) on methanol yield has been investigated. The Aspen predicted data is compared with the fixed-bed reactor experimental data. High pressure and low-temperature conditions are found to be the favourable option for a higher value of methanol yield. The CO2 conversion and CH3OH selectivity are favourable when the H2/CO2 molar ratio is greater than 3. A substantial gap between the Aspen predicted equilibrium conversion of CO2 and the experimental value of CO2 conversion is observed in the study.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 753
Author(s):  
Maria Lykaki ◽  
Sofia Stefa ◽  
Sónia A. C. Carabineiro ◽  
Miguel A. Soria ◽  
Luís M. Madeira ◽  
...  

The copper–ceria (CuOx/CeO2) system has been extensively investigated in several catalytic processes, given its distinctive properties and considerable low cost compared to noble metal-based catalysts. The fine-tuning of key parameters, e.g., the particle size and shape of individual counterparts, can significantly affect the physicochemical properties and subsequently the catalytic performance of the binary oxide. To this end, the present work focuses on the morphology effects of ceria nanoparticles, i.e., nanopolyhedra (P), nanocubes (C), and nanorods (R), on the water–gas shift (WGS) performance of CuOx/CeO2 catalysts. Various characterization techniques were employed to unveil the effect of shape on the structural, redox and surface properties. According to the acquired results, the support morphology affects to a different extent the reducibility and mobility of oxygen species, following the trend: R > P > C. This consequently influences copper–ceria interactions and the stabilization of partially reduced copper species (Cu+) through the Cu2+/Cu+ and Ce4+/Ce3+ redox cycles. Regarding the WGS performance, bare ceria supports exhibit no activity, while the addition of copper to the different ceria nanostructures alters significantly this behaviour. The CuOx/CeO2 sample of rod-like morphology demonstrates the best catalytic activity and stability, approaching the thermodynamic equilibrium conversion at 350 °C. The greater abundance in loosely bound oxygen species, oxygen vacancies and highly dispersed Cu+ species can be mainly accounted for its superior catalytic performance.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 326
Author(s):  
Masahiro Seshimo ◽  
Hiromi Urai ◽  
Kazuaki Sasa ◽  
Hitoshi Nishino ◽  
Yuichiro Yamaguchi ◽  
...  

Methylcyclohexane-toluene system is one of the most promising methods for hydrogen transport/storage. The methylcyclohexane dehydrogenation can be exceeded by the equilibrium conversion using membrane reactor. However, the modularization of the membrane reactor and manufacturing longer silica membranes than 100 mm are little developed. Herein, we have developed silica membrane with practical length by a counter-diffusion chemical vapor deposition method, and membrane reactor module bundled multiple silica membranes. The developed 500 mm-length silica membrane had high hydrogen permselective performance (H2 permeance > 1 × 10−6 mol m−2 s−1 Pa−1, H2/SF6 selectivity > 10,000). In addition, we successfully demonstrated effective methylcyclohexane dehydrogenation using a flange-type membrane reactor module, which was installed with 6 silica membranes. The results indicated that conversion of methylcyclohexane was around 85% at 573 K, whereas the equilibrium conversion was 42%.


2021 ◽  
Vol 17 ◽  
pp. 873-884
Author(s):  
Peter J Halling

The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping-pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which can be termed ee decline parameter, eeDP) accounts for the major effect on the tendency for the ee to decline. For some mechanisms, the concentrations or ratios of the starting materials have an important influence on the fall in ee. For the application of enzymatic desymmetrisation it is important to study if and how the product ee declines at high conversion.


Author(s):  
Vitaliy Trishch ◽  
Yurii Beznosyk ◽  
Gregory Yablonsky ◽  
Denis Constales

Finding the optimal mode is a conceptual problem. The most important indicator that reflects the perfection of a chemical reactor is the intensity of the process in it. The phenomenon of conservatively perturbed-equilibrium (CPE) in the conditions of different types of reactors (in acyclic and cyclic systems) was studied: the ideal displacement reactor ("steady-state plug flow reactor, PFR") and the ideal mixing reactor ("steady-state continuous stirred tank reactor, CSTR"). For the acyclic reaction, the time of extremum onset was less in CSTR by ≈2.1%, but the concentration of substance B in the extremum in PFR was greater by ≈17.2% than in CSTR. For the cyclic reaction, the time of extremum onset was less in CSTR by ≈5.6%, but the concentration of substance B in the extremum in PFR was greater by ≈11.6% than in CSTR. For the acyclic and cyclic reaction in PFR, the time of occurrence of the extremum of the cyclic reaction was lower by ≈44.2% than in the acyclic, but the concentration of substance B in the extremum of the acyclic reaction was greater by ≈24.8% than in the cyclic reaction. For the acyclic and cyclic reaction in CSTR, the time of occurrence of the extremum of the cyclic reaction was lower by ≈46.2% than in the acyclic, but the concentration of substance B in the extremum in the acyclic reaction was greater by ≈18.9% than in the cyclic reaction. The cyclic system showed a shorter time for the onset of the extremum, but the acyclic reaction system showed a higher concentration of substance B at the extremum in PFR and CSTR. Although the time of extremum onset was the lowest in CSTR in the cyclic system, the concentration of substance B in the extremum was highest in the PFR in the acyclic system. Therefore (from our systems and reactors) the acyclic system in PFR shows the best characteristics. The extremum in transient modes is always observed for acyclic and cyclic complex reactions in both reactors, both in PFR and in CSTR. The phenomenon of conservatively perturbed-equilibrium is manifested in both PFR and CSTR. With the same rate constants, the acyclic system in PFR is characterized by higher values of "over equilibrium" conversion than the acyclic system in CSTR. Similarly, with the same rate constants, the cyclic system in PFR is characterized by higher values of "over equilibrium" conversion than the cyclic system in CSTR. The time of extremum onset is less in CSTR. This is true for acyclic and cyclic systems. The greater the difference between the initial concentrations of the two substances, the greater the "over equilibrium" concentration of the third substance, the initial concentration of which was equilibrium. At our values of kinetic parameters, the sensitivity of the time of occurrence of the extremum of the same reaction in different reactors (PFR and CSTR) is small (up to ≈5.6%), and at different reactions (acyclic and cyclic), but in one type of reactor (PFR or CSTR) - significant, reaching ≈46.2%.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 433
Author(s):  
Izabela S. Pieta ◽  
Agnieszka Lewalska-Graczyk ◽  
Pawel Kowalik ◽  
Katarzyna Antoniak-Jurak ◽  
Mikolaj Krysa ◽  
...  

Within the Waste2Fuel project, innovative, high-performance, and cost-effective fuel production methods are developed to target the “closed carbon cycle”. The catalysts supported on different metal oxides were characterized by XRD, XPS, Raman, UV-Vis, temperature-programmed techniques; then, they were tested in CO2 hydrogenation at 1 bar. Moreover, the V2O5 promotion was studied for Ni/Al2O3 catalyst. The precisely designed hydrotalcite-derived catalyst and vanadia-promoted Ni-catalysts deliver exceptional conversions for the studied processes, presenting high durability and selectivity, outperforming the best-known catalysts. The equilibrium conversion was reached at temperatures around 623 K, with the primary product of reaction CH4 (>97% CH4 yield). Although the Ni loading in hydrotalcite-derived NiWP is lower by more than 40%, compared to reference NiR catalyst and available commercial samples, the activity increases for this sample, reaching almost equilibrium values (GHSV = 1.2 × 104 h–1, 1 atm, and 293 K).


2020 ◽  
Author(s):  
Felix Kaspar ◽  
Peter Neubauer ◽  
Anke Kurreck

<div>Ask what an equilibrium can do for you:</div><div>Hydrolysis of pentose-1-phosphates leads to an apparent increase of the equilibrium conversion in nucleoside phosphorolysis reactions. This information can be leveraged via equilibrium thermodynamics to determine the hydrolysis kinetics of in situ generated sugar phosphates, which are known to be elusive and difficult to quantify.<br></div>


2020 ◽  
Author(s):  
Felix Kaspar ◽  
Peter Neubauer ◽  
Anke Kurreck

<div>Ask what an equilibrium can do for you:</div><div>Hydrolysis of pentose-1-phosphates leads to an apparent increase of the equilibrium conversion in nucleoside phosphorolysis reactions. This information can be leveraged via equilibrium thermodynamics to determine the hydrolysis kinetics of in situ generated sugar phosphates, which are known to be elusive and difficult to quantify.<br></div>


2020 ◽  
Vol 150 (12) ◽  
pp. 3369-3376
Author(s):  
Luke A. Parker ◽  
James H. Carter ◽  
Nicholas F. Dummer ◽  
Nia Richards ◽  
David J. Morgan ◽  
...  

Abstract A range of Cs-doped Fe/Al2O3 catalysts were prepared for the ammonia decomposition reaction. Through time on-line studies it was shown that at all loadings of Cs investigated the activity of the Fe/Al2O3 catalysts was enhanced, with the optimum Cs:Fe being ca. 1. Initially, the rate of NH3 decomposition was low, typically < 10% equilibrium conversion (99.7%@500°C) recorded after 1 h. All catalysts exhibited an induction period (typically ca. 10 h) with the conversion reaching a high of 67% equilibrium conversion for Cs:Fe = 0.5 and 1. The highest rate of decomposition observed was attributed to the balance between increasing the concentration of Cs without blocking the active site. Analysis of H2-TPR and XPS measurements indicated that Cs acts as an electronic promoter. Previously, Cs has been shown to act as a promoter for Ru, where Cs alters the electron density of the active site, thereby facilitating the recombination of N2 which is considered the rate determining step. In addition, XRD and N2 adsorption measurements suggest that with higher Cs loadings deactivation of the catalytic activity is due to a layer of CsOH that forms on the surface and blocks active sites. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document