X-Ray Optics and Instrumentation
Latest Publications


TOTAL DOCUMENTS

26
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Published By Hindawi Limited

1687-7640, 1687-7632

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Nicolai F. Brejnholt ◽  
Finn E. Christensen ◽  
Charles J. Hailey ◽  
Nicolas M. Barrière ◽  
William W. Craig ◽  
...  

The Nuclear Spectroscopic Telescope ARray (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5–80 keV) telescope to orbit. The ground calibration of the optics posed a challenge as the need to suppress finite source distance effects over the full optic and the energy range of interest were unique requirements not met by any existing facility. In this paper we present the requirements for the NuSTAR optics ground calibration, and how the Rainwater Memorial Calibration Facility, RaMCaF, is designed to meet the calibration requirements. The nearly 175 m long beamline sports a 48 cm diameter 5–100 keV X-ray beam and is capable of carrying out detailed studies of large diameter optic elements, such as the NuSTAR optics, as well as flat multilayer-coated Silicon wafers.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Paul Gorenstein

Focusing X-ray telescopes have been the most important factor in X-ray astronomy’s ascent to equality with optical and radio astronomy. They are the prime tool for studying thermal emission from very high temperature regions, non-thermal synchrotron radiation from very high energy particles in magnetic fields and inverse Compton scattering of lower energy photons into the X-ray band. Four missions with focusing grazing incidence X-ray telescopes based upon the Wolter 1 geometry are currently operating in space within the 0.2 to 10 keV band. Two observatory class missions have been operating since 1999 with both imaging capability and high resolution dispersive spectrometers. They are NASA’s Chandra X-ray Observatory, which has an angular resolution of 0.5 arc seconds and an area of 0.1 m2 and ESA’s XMM-Newton which has 3 co-aligned telescopes with a combined effective area of 0.43 m2 and a resolution of 15 arc seconds. The two others are Japan’s Suzaku with lower spatial resolution and non-dispersive spectroscopy and the XRT of Swift which observes and precisely positions the X-ray afterglows of gamma-ray bursts. New missions include focusing telescopes with much broader bandwidth and telescopes that will perform a new sky survey. NASA, ESA, and Japan’s space agency are collaborating in developing an observatory with very large effective area for very high energy resolution dispersive and non-dispersive spectroscopy. New technologies are required to improve upon the angular resolution of Chandra. Adaptive optics should provide modest improvement. However, orders of magnitude improvement can be achieved only by employing physical optics. Transmitting diffractive-refractive lenses are capable theoretically of achieving sub-milli arc second resolution. X-ray interferometry could in theory achieve 0.1 micro arc second resolution, which is sufficient to image the event horizon of super massive black holes at the center of nearby active galaxies. However, the physical optics systems have focal lengths in the range 103 to 104 km and cannot be realized until the technology for accurately positioned long distance formation flying between optics and detector is developed.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Armin Bayer ◽  
Frank Barkusky ◽  
Stefan Döring ◽  
Peter Großmann ◽  
Klaus Mann

We present an overview on the EUV/XUV activities of the Laser-Laboratorium Göttingen based on table-top laser-produced plasma (LPP) sources. As target materials, gaseous jets of noble gases or solid Gold are employed. In order to obtain high EUV fluence, a Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to the source. By demagnified (10x) imaging of the Au plasma, an EUV spot with a maximum energy density of ∼1.3 J/cm2 is generated (3 μm diameter, pulse duration 8.8 ns). First applications of this system reveal its potential for high-resolution modification and direct structuring of solid surfaces. Additionally, an EUV/XUV setup for structural analysis was developed. Using a gas puff target combined with a grazing incidence optics (Kirkpatrick-Baez arrangement), it offers the possibility to perform angular resolved reflectivity, diffraction, and scattering experiments. For chemical analysis of various samples, an NEXAFS setup was built, based on gaseous Krypton as a broadband emitter in the water-window range around the carbon K-edge (4.4 nm). Here, proof-of-principle for NEXAFS with lab-scaled XUV sources is given on polyimide as a reference.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Hanfei Yan ◽  
Hyon Chol Kang ◽  
Ray Conley ◽  
Chian Liu ◽  
Albert T. Macrander ◽  
...  

The multilayer Laue lens (MLL) is a novel diffractive optic for hard X-ray nanofocusing, which is fabricated by thin film deposition techniques and takes advantage of the dynamical diffraction effect to achieve a high numerical aperture and efficiency. It overcomes two difficulties encountered in diffractive optics fabrication for focusing hard X-rays: (1) small outmost zone width and (2) high aspect ratio. Here, we will give a review on types, modeling approaches, properties, fabrication, and characterization methods of MLL optics. We show that a full-wave dynamical diffraction theory has been developed to describe the dynamical diffraction property of the MLL and has been employed to design the optimal shapes for nanofocusing. We also show a 16 nm line focus obtained by a partial MLL and several characterization methods. Experimental results show a good agreement with the theoretical calculations. With the continuing development of MLL optics, we believe that an MLL-based hard x-ray microscope with true nanometer resolution is on the horizon.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Gerald K. Skinner

Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of microarcseconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Marcos Bavdaz ◽  
Max Collon ◽  
Marco Beijersbergen ◽  
Kotska Wallace ◽  
Eric Wille

Silicon Pore Optics (SPO) is a new X-ray optics technology under development in Europe, forming the ESA baseline technology for the International X-ray Observatory candidate mission studied jointly by ESA, NASA, and JAXA. With its matrix-like structure, made of monocrystalline-bonded Silicon mirrors, it can achieve the required angular resolution and low mass density required for future large X-ray observatories. Glass-based Micro Pore Optics (MPO) achieve modest angular resolution compared to SPO, but are even lighter and have achieved sufficient maturity level to be accepted as the X-ray optic technology for instruments on board the Bepi-Colombo mission, due to visit the planet Mercury. Opportunities for technology transfer to ground-based applications include material science, security and scanning equipment, and medical diagnostics. Pore X-ray optics combine high performance with modularity and economic industrial production processes, ensuring cost effective implementation.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Christian Morawe ◽  
Markus Osterhoff

This paper provides a comprehensive overview on the utilization of curved graded multilayer coatings as focusing elements for hard X-rays. It concentrates on the Kirkpatrick-Baez (KB) focusing setup that has been developed at 3rd generation synchrotron sources worldwide. The optical performance of these devices is evaluated applying analytical and numerical approaches. The essential role of the multilayer coating and its meridional d-spacing gradient are discussed as well as important technological issues. Experimental data and examples of operational KB focusing devices and applications complement the work.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Ying-Yi Chang ◽  
Sung-Yu Chen ◽  
Shih-Chang Weng ◽  
Chia-Hung Chu ◽  
Mau-Tsu Tang ◽  
...  

An overview is given of the study on X-ray focusing using the Fabry-Perot type multi-plate silicon crystal cavities consisting of compound refractive lenses. Silicon (12 4 0) is used as the back reflection for cavity resonance at the photon energy of 14.4388 keV. Measurements of focal length of the transmitted beam through the crystal cavities show enhanced focusing effect due to the presence of back diffraction. Also, an incident beam with ultrahigh energy resolution can improve the focusing owing to the wider acceptance angle of the back diffraction. Considerations based on the excitation of dispersion surface within the framework of X-ray dynamical diffraction theory are also presented to reveal the origin of this enhanced focusing.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Sheng Yuan ◽  
Matthew Church ◽  
Valeriy V. Yashchuk ◽  
Kenneth A. Goldberg ◽  
Richard S. Celestre ◽  
...  

We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the advanced light source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3 K does not noticeably affect the mirror figure. Without temperature stabilization, the rms slope error is changed by approximately 1.5 μrad (primarily defocus) under the same conditions.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Michael J. Haugh ◽  
Richard Stewart

This paper describes the design, crystal selection, and crystal testing for a vertical Johann spectrometer operating in the 13 keV range to measure ion Doppler broadening in inertial confinement plasmas. The spectrometer is designed to use thin, curved, mica crystals to achieve a resolving power of E/ΔE>2000. A number of natural mica crystals were screened for flatness and X-ray diffraction width to find samples of sufficient perfection for use in the instrument. Procedures to select and mount high quality mica samples are discussed. A diode-type X-ray source coupled to a dual goniometer arrangement was used to measure the crystal reflectivity curve. A procedure was developed for evaluating the goniometer performance using a set of diffraction grade Si crystals. This goniometer system was invaluable for identifying the best original crystals for further use and developing the techniques to select satisfactory curved crystals for the spectrometer.


Sign in / Sign up

Export Citation Format

Share Document