Low Friction Recoating Performance Improvements Aboard A Passenger Ferry

2021 ◽  
Author(s):  
Trevor Harris ◽  
Allison Kennedy

In recent years, there have been many technological advancements to support greener vessel operations and improved performance. The National Research Council of Canada evaluated the effect of a low friction hull coating from both a fuel consumption and power savings perspective. To quantify the variation in both fuel and power, an analysis methodology was adopted from the ISO 19030 standard for measuring the change in hull and propeller performance. The results of this analysis indicated that between 17.5 and 20.5 knots the power required to achieve cruising speed decreased by an average of 3.56% subsequent to the hull recoat. This translates to a fuel consumption reduction of 3.27% within the same speed range. The improvements in performance were most notable at 20.5 knots.

Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


2020 ◽  
Author(s):  
Moira Pryhoda ◽  
Rachel Wathen ◽  
Jay Dicharry ◽  
Kevin Shelburne ◽  
Bradley Davidson

The objective of this research was to determine if three alternative shoe upper closures improve biomechanical performance measures relative to a standard lace closure in court-based movements. NCAA Division 1 and club-level male athletes recruited from lacrosse, soccer, tennis, and rugby performed four court-based movements: Lateral Skater Jump repeats (LSJ), Countermovement Jump repeats (CMJ), Triangle Drop Step drill (TDS), and Anterior-Posterior drill (AP). Each athlete performed the movements in four shoe upper closures: Standard Closure, Lace Replacement, Y Wrap, and Tri Strap. Ground contact time, peak eccentric rate of force development (RFD), peak concentric GRF, peak concentric COM power, eccentric work, concentric work, and movement completion time were measured. Tri Strap saw improvements in four of seven biomechanical variables during CMJ and LSJ and one variable during TDS. Lace Replacement delivered improvements in one performance measure during CMJ, LSJ, and AP, and two variables in TDS. Y Wrap improved performance in three performance measures during LSJ and impaired performance in two measures during CMJ and three measures during AP. Tri Strap provided the most consistent performance improvements across all movements. This study allowed for the mechanical properties of the shoe lower to remain consistent across designs to examine if an alternative shoe upper closure could enhance performance. Our results indicate that increased proprioception and/or mechanical properties due to the alternative closures, especially Tri Strap, improves athlete performance, which concludes that the design of the shoe upper is an essential consideration in shoe design.


2020 ◽  
Vol 5 (3-4) ◽  
pp. 173-186
Author(s):  
Matthias Werra ◽  
Axel Sturm ◽  
Ferit Küçükay

Abstract This paper presents a virtual toolchain for the optimal concept and prototype dimensioning of 48 V hybrid drivetrains. First, this toolchain is used to dimension the drivetrain components for a 48 V P0+P4 hybrid which combines an electric machine in the belt drive of the internal combustion engine and a second electric machine at the rear axle. On an optimal concept level, the power and gear ratios of the electric components in the 48 V system are defined for the best fuel consumption and performance. In the second step, the optimal P0+P4 drivetrain is simulated with a prototype model using a realistic rule-based operating strategy to determine realistic behavior in legal cycles and customer operation. The optimal variant shows a fuel consumption reduction in the Worldwide harmonized Light Duty Test Cycle of 13.6 % compared to a conventional vehicle whereas the prototype simulation shows a relatively higher savings potential of 14.8 %. In the prototype simulation for customer operation, the 48 V hybrid drivetrain reduces the fuel consumption by up to 24.6 % in urban areas due to a high amount of launching and braking events. Extra-urban and highway areas show fuel reductions up to 11.6 % and 4.2 %, respectively due to higher vehicle speed and power requirements. The presented virtual toolchain can be used to combine optimal concept dimensioning with close to reality behaviour simulations to maximise realistic statements and minimize time effort.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4396
Author(s):  
André Eugenio Lazzaretti ◽  
Douglas Paulo Bertrand Renaux ◽  
Carlos Raimundo Erig Lima ◽  
Bruna Machado Mulinari ◽  
Hellen Cristina Ancelmo ◽  
...  

A multi-agent architecture for a Non-Intrusive Load Monitoring (NILM) solution is presented and evaluated. The underlying rationale for such an architecture is that each agent (load event detection, feature extraction, and classification) outperforms others of the same type in particular scenarios; hence, by combining the expertise of these agents, the system presents an improved performance. Known NILM algorithms, as well as new algorithms, proposed by the authors, were individually evaluated and compared. The proposed architecture considers a NILM system composed of Load Monitoring Modules (LMM) that report to a Center of Operations, required in larger facilities. For the purposed of evaluating and comparing performance, five load event detect agents, five feature extraction agents, and five classification agents were studied so that the best combinations of agents could be implemented in LMMs. To evaluate the proposed system, the COOLL and the LIT-Dataset were used. Performance improvements were detected in all scenarios, with power-ON and power-OFF detection improving up to 13%, while classification accuracy improved up to 9.4%.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Reza Kazemi ◽  
Mohsen Raf’at ◽  
Amir Reza noruzi

Optimization of gear ratio with the objectives of fuel consumption reduction and vehicle longitudinal performance improvement has been the subject of many studies for years. Finding a strategy for changing gears with specific control objectives, especially in the design of vehicles equipped with Continuously Variable Transition system (CVT), which has advantage of arbitrary selection of gear ratio, has been the aim of some recent researches. Optimal control theory has rarely been used in the previous control approaches applied to such systems due to the limitations in the use of fast computational systems. The aim of this study is to design the aforementioned gear ratio change strategy and related control rules on the basis of optimal control. A driver model is also designed for the simulation of driving cycle using MATLAB Simulink Toolbar. Results of implementing optimal control rules in vehicle longitudinal movement simulation with the aim of fuel consumption reduction are finally represented. The presented method has the remarkable advantage of considerable fuel consumption reduction in comparison to other proposed approaches for gear ratio change strategies.


Author(s):  
Catherine M. Burns

Rasmussen and Vicente’s cognitive work analysis (CWA) is well known as an approach to developing a rich set of design requirements. CWA has become quite well recognized as an approach to understand complex domains and generate requirements for effective new designs. These requirements have resulted in information system interfaces that have improved performance in process control, health, finance, and military domains. The pattern of performance improvements seen with displays developed from CWA is quite particular. For example, improved performance is often seen in fault detection and diagnosis, but not particularly in the performance of regular tasks. Human performance in unanticipated situations is improved, but not performance in normal situations. One way to look at the effects of CWA-based interventions is to consider that CWA creates performance more typical of experts. CWA was a method founded on attempts to understand human expertise and transfer the knowledge of human experts into a design so that the less expert could benefit. From this grounding, CWA is an important method for understanding and transferring expertise. This chapter will move through the steps of CWA and their various contributions to the understanding and development of expertise. Finally, how CWA can be used to develop and transfer expertise through design will be discussed.


Sign in / Sign up

Export Citation Format

Share Document