Performance Improvements in Cooker-Top Gas Burners for Small Aspect Ratio Changes

Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Abo . Zahra A.I ◽  
M.K. Abd El- Wahab ◽  
M.A. Tawfik

The target of the biomass co-pyrolysis is improvingthe heating value of the produced bio-products of a certain type of feedstock, besides disposal of more than one residue in the same time. Thus, this work aims to operate a local fabricated fixed-bed pyrolyzer to improve the pyrolytic gas yield produced by the ground pieces of three biomass residues namely Mango trees Pruning Logs (MPL), Sugarcane bagasse (SB) and Rice straw (RS) using an affordable slow pyrolysis technique. This work was carried out under slow pyrolysis conditions represented in final pyrolysis temperature of 400 °C, vapor residence time of 4 min, heating rate of 0.01-1 °C/s in full absence of oxygen. The pyrolytic gas production was assessed under different feedstock mixing ratios of (1:2:1), (1:1:2) and (2:1:1) as ratio of (RS: SB: MPL), particle lengths of 1-5, 10-15 and 20-25 mm, with and without sandy bed at the bottom of pyrolysis chamber as a fluidized bed. The obtained results showed that, using the fluidized fixed-bed pyrolyzer under slow co-pyrolysis conditions gave the optimum results where in, the pyrolytic gas concentration, gas yield, higher heating value of pyrolytic gasand energy conversion efficiency were 55%, 1.09 Nm3 /kg, 14.97 MJ/Nm3 and 85.43%, respectively, and 53.7%, 1.08 Nm3 /kg, 13.75 MJ/Nm3 ,77.71% in case of using the pyrolyzer without fluidized bed under the same operating conditions. So, the pyrolyzer with fluidized bed achieves an increment in the higher heating value and energy conversion efficiency by about 8.15% and 9.03%, respectivly over the pyrolyzer without fluidized bed.Furthermore, the cost per energy unit of pyrolytic gas produced by the fluidized bed pyrolyzer is lower than the common two fossil gaseous fuels of natural gas and LPG costs by about 28.57% and 80%, respectively.


2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3550
Author(s):  
Kyeongmin Kim ◽  
Matthew J. Hall ◽  
Preston S. Wilson ◽  
Ronald D. Matthews

A spark plug calorimeter is introduced for quantifying the thermal energy delivered to unreactive gas surrounding the spark gap during spark ignition. Unlike other calorimeters, which measure the small pressure rise of the gas above the relatively high gauge pressure or relative to an internal reference, the present calorimeter measured the differential rise in pressure relative to the initial pressure in the calorimeter chamber. By using a large portion of the dynamic range of the chip-based pressure sensor, a high signal to noise ratio is possible; this can be advantageous, particularly for high initial pressures. Using this calorimeter, a parametric study was carried out, measuring the thermal energy deposition in the gas and the electrical-to-thermal energy conversion efficiency over a larger range of initial pressures than has been carried out previously (1–24 bar absolute at 298 K). The spark plug and inductive ignition circuit used gave arc-type rather than glow-type discharges. A standard resistor-type automotive spark plug was tested. The effects of spark gap distance (0.3–1.5 mm) and ignition dwell time (2–6 ms) were studied for an inductive-type ignition system. It was found that energy deposition to the gas (nitrogen) and the electrical-to-thermal energy conversion efficiency increased strongly with increasing gas pressure and spark gap distance. For the same ignition hardware and operating conditions, the thermal energy delivered to the gap varied from less than 1 mJ at 1 atm pressure and a gap distance of 0.3 mm to over 25 mJ at a pressure of 24 bar and a gap distance of 1.5 mm. For gas densities that might be representative of those in an engine at the time of ignition, the electrical-to-thermal energy conversion efficiencies ranged from approximately 3% at low pressures (4 bar) and small gap (0.3 mm) to as much as 40% at the highest pressure of 24 bar and with a gap of 1.5 mm.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaoliang Liu ◽  
Xiaoming Huang ◽  
Jian Zhang ◽  
Weitao Sun

Purpose The purpose of this study is to investigate the influence mechanism of different interface component surface textures on the ultrasonic motor (USM) output performance. Design/methodology/approach The energy transmission mechanism of the traveling-wave ultrasonic motor 60 (TRUM-60) was numerically and experimentally investigated by fabricating dimple textures with different feature types on the friction material and the stator. Findings Textured friction material can increase the contact range effectively, and thus, can improve the friction characteristics of the interface and the output performance of the TRUM-60. The experimental results verified the expected influence mechanism and demonstrated that the use of either a textured friction material or stator has a very different effect on USM output performance. A textured PI-based friction material improved the TRUM-60 output performance, resulting in a maximum energy conversion efficiency of 57.11%. However, a textured stator degraded the TRUM-60 output performance, resulting in a minimum energy conversion efficiency of only 44.92%. Originality/value The results of this study provide a theoretical foundation for improved USM designs with textured interfaces.


2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


Sign in / Sign up

Export Citation Format

Share Document