Soil quality assessment using soil organic carbon, total nitrogen and microbial properties in hilly agro-ecosystem

2018 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
R. Saha ◽  
B. Majumdar ◽  
S.P. Mazumdar ◽  
D. Barman ◽  
P. Bhattacharyya
2011 ◽  
Vol 02 (01) ◽  
pp. 34-40 ◽  
Author(s):  
Maruf Kajogbola Adebayo Adeboye ◽  
Abdullahi Bala ◽  
Akim Oserhien Osunde ◽  
Anthony Ozoemenam Uzoma ◽  
Ayo Joshua Odofin ◽  
...  

2020 ◽  
Author(s):  
Estela Nadal Romero ◽  
Pedro Sánchez Navarrete ◽  
Makki Khorchani ◽  
Luis Miguel Medrano-Moreno ◽  
Teodoro Lasanta

<p>Mediterranean mid-mountain areas have been subject to significant human pressure through deforestation, cultivation of steep slopes, fires and overgrazing. However, during the 20<sup>th</sup> century, the mountainous areas of the northern rim of the Mediterranean region were affected by abandonment of cultivated fields and natural revegetation processes. Natural revegetation occurred in most of the lands where human activity (farming on steep slopes, grazing) declined in intensity or was abandoned, resulting in the expansion of shrubs, bushes and forests. What are the consequences of such processes on soil quality, soil organic carbon (SOC) and soil total nitrogen (TN) stocks and vegetation composition? What are the differences between the different land uses and land covers (LULCs)? The general aim of this study is to study the effects of natural revegetation processes after land abandonment on soil quality, SOC and soil TN stocks and vegetation composition in the Leza Valley (Iberian System, Spain). We hypothesized that natural revegetation processes improves soil quality and higher SOC and TN stocks. For this purpose, we analyzed 60 soil samples, from 5 LULCs and four depths (0-10, 10-20, 20-30, 30-40 cm): pasture, shrubs characterized by the presence of Cistus laurifolius, bushed characterized by the presence of Juniperus communis, Young forest (Quercus faginea), and old forest or dehesa. In addition, plant species inventories were carried out in each LULC.</p><p>The results related to physico-chemical soil properties indicated: (i) significant differences in soil quality between the first stages of natural revegetation (pasture and shrubs) and young forest (limited to the first 20 cm between shrub and young forest); (ii)  significant differences in SOC stocks between the first stage of natural revegetation (pasture) and young and old forests; (iii) significant differences in soil TN stocks between pasture and shrubs and young and old forests; and (iv) significant differences between the shrub families. Final results obtained through a Principal Component Analysis with all the variables differentiate forests from shrubs, bushes and pastures confirming our first hypothesis. We can conclude that natural revegetation is an effective strategy to improve soil quality and increase SOC and soil TN stocks.</p>


2015 ◽  
Vol 7 (2) ◽  
pp. 1375-1398 ◽  
Author(s):  
A. Cruz-Ruíz ◽  
E. Cruz-Ruíz ◽  
R. Vaca ◽  
P. Del Aguila ◽  
J. Lugo

Abstract. México is the worl's fourth most important maize producer; hence, there is a need to maintain soil quality for a sustainable production in the upcoming years. Pumice mining, a superficial operation, modifies large areas in Central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed-time since pumice mining (0–15 years), in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10 and 15 year-old reclaimed soils were compared with adjacent undisturbed site. Our results indicate that soil organic carbon, total nitrogen, microbial biomass carbon and microbial quotients were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance. Recovery of soil total nitrogen was faster than soil organic carbon. Principal components analysis was applied. The first three components together explain 71.72 % of the total variability. First factor reveals strong associations between total nitrogen, microbial biomass carbon and pH. The second factor reveals high loading of urease and catalase. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were: total nitrogen, microbial biomass carbon and soil organic carbon.


2021 ◽  
Vol 104 ◽  
pp. 103300
Author(s):  
Pusanisa Heepngoen ◽  
Alexis Thoumazeau ◽  
Marie-Sophie Renevier ◽  
Kannika Sajjaphan ◽  
Frédéric Gay ◽  
...  

Author(s):  
Marios Sophocleous ◽  
Laura Contat-Rodrigo ◽  
Eduardo Garcia-Breijo ◽  
Julius Georgiou

2021 ◽  
pp. 1-19
Author(s):  
Yingcong Ye ◽  
Yefeng Jiang ◽  
Lihua Kuang ◽  
Yi Han ◽  
Zhe Xu ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 793 ◽  
Author(s):  
Teklu Erkossa ◽  
Karl Stahr ◽  
Thomas Gaiser

The study was conducted at Caffee Doonsa (08°88′N, 39°08′E; 2400 m asl), a small watershed in the central highlands of Ethiopia, in order to identify farmers’ goals of soil management and the indicators they use in selecting soils for a certain function, and to categorise the soils in different quality groups with respect to the major functions. Thirty-six male farmers of different age and wealth groups participated in a Participatory Rural Appraisal technique. They listed and prioritised 12 soil functions in the area and itemised the soil quality indicators (characteristics). Based on the indicators, the soils in the watershed were classified into 3 soil quality (SQ) groups (Abolse, Kooticha, and Carii). The SQ groups have been evaluated and ranked for the major soil functions. For crop production, Abolse was graded best, followed by Kooticha and Carii, respectively. The grain and straw yield data of wheat (Triticum aestivum L.) taken from the SQ groups confirmed the farmers claim, in that Abolse gave the highest grain yield (4573 kg/ha), followed by 4411 and 3657 kg/ha for Kooticha and Carii, respectively. Local insights should be included in systematic soil quality assessment, and in planning and implementation of various soil management interventions.


Sign in / Sign up

Export Citation Format

Share Document