scholarly journals Capsular Contracture after Calf Augmentation with Silicone Implant Insertion

2015 ◽  
Vol 42 (5) ◽  
pp. 642 ◽  
Author(s):  
Bommie Florence Seo ◽  
Jong Yun Choi ◽  
Jimin Kim ◽  
Deuk Young Oh
2021 ◽  
pp. 1-12
Author(s):  
Meng Wu ◽  
Ming Li ◽  
Hong-Ju Xie ◽  
Hong-Wei Liu

Silicone implant-based augmentation rhinoplasty or mammoplasty induces capsular contracture, which has been acknowledged as a process that develops an abnormal fibrotic capsule associated with the immune response to allogeneic materials. However, the signaling pathways leading to the nasal fibrosis remain poorly investigated. We aimed to explore the molecular mechanism underlying the pathogenesis of nasal capsular contracture, with a specific research interest in the signaling pathways involved in fibrotic development at the advanced stage of contracture. By examining our recently obtained RNA sequencing data and global gene expression profiling between grade II and grade IV nasal capsular tissues, we found that both the RAP1 and JAK/STAT signaling pathways were hyperactive in the contracted capsules. This was verified on quantitative real-time PCR which demonstrated upregulation of most of the representative component signatures in these pathways. Loss-of-function assays through siRNA-mediated Rap1 silencing and/or small molecule-directed inhibition of JAK/STAT pathway in ex vivo primary nasal fibroblasts caused a series of dramatic behavioral and functional changes, including decreased cell viability, increased apoptosis, reduced secretion of proinflammatory cytokines, and synthesis of type I collagen, compared to control cells, and indicating the essential role of the RAP1 and JAK/STAT signaling pathways in nasal capsular fibrosis. Our results sheds light on targeting downstream signaling pathways for the prevention and therapy of silicone implant-induced nasal capsular contracture.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2630
Author(s):  
Hyun-Seok Kim ◽  
Seongsoo Kim ◽  
Byung-Ho Shin ◽  
Chan-Yeong Heo ◽  
Omar Faruq ◽  
...  

Breast augmentations with silicone implants can have adverse effects on tissues that, in turn, lead to capsular contracture (CC). One of the potential ways of overcoming CC is to control the implant/host interaction using immunomodulatory agents. Recently, a high ratio of anti-inflammatory (M2) macrophages to pro-inflammatory (M1) macrophages has been reported to be an effective tissue regeneration approach at the implant site. In this study, a biofunctionalized implant was coated with interleukin (IL)-4 to inhibit an adverse immune reaction and promoted tissue regeneration by promoting polarization of macrophages into the M2 pro-healing phenotype in the long term. Surface wettability, nitrogen content, and atomic force microscopy data clearly showed the successful immobilization of IL-4 on the silicone implant. Furthermore, in vitro results revealed that IL-4-coated implants were able to decrease the secretion of inflammatory cytokines (IL-6 and tumor necrosis factor-α) and induced the production of IL-10 and the upregulation of arginase-1 (mannose receptor expressed by M2 macrophage). The efficacy of this immunomodulatory implant was further demonstrated in an in vivo rat model. The animal study showed that the presence of IL-4 diminished the capsule thickness, the amount of collagen, tissue inflammation, and the infiltration of fibroblasts and myofibroblasts. These results suggest that macrophage phenotype modulation can effectively reduce inflammation and fibrous CC on a silicone implant conjugated with IL-4.


2013 ◽  
Vol 37 (3) ◽  
pp. 543-548 ◽  
Author(s):  
Seong Oh Park ◽  
Jihyeon Han ◽  
Kyung Won Minn ◽  
Ung Sik Jin

2017 ◽  
Vol 19 (5) ◽  
pp. 436-437 ◽  
Author(s):  
Woongsang Sunwoo ◽  
Hahnjin Jung ◽  
Dae Woo Kim ◽  
Hong Ryul Jin

BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e044219
Author(s):  
J X Harmeling ◽  
Kevin Peter Cinca ◽  
Eleni-Rosalina Andrinopoulou ◽  
Eveline M L Corten ◽  
M A Mureau

IntroductionTwo-stage implant-based breast reconstruction is the most commonly performed postmastectomy reconstructive technique. During the first stage, a tissue expander creates a sufficiently large pocket for the definite breast implant placed in the second stage. Capsular contracture is a common long-term complication associated with implant-based breast reconstruction, causing functional complaints and often requiring reoperation. The exact aetiology is still unknown, but a relationship between the outer surface of the implant and the probability of developing capsular contracture has been suggested. The purpose of this study is to determine whether polyurethane-covered implants result in a different capsular contracture rate than textured implants.Methods and analysisThe Textured Implants versus Polyurethane-covered Implants (TIPI) trial is a multicentre randomised controlled trial with a 1:1 allocation rate and a follow-up of 10 years. A total of 321 breasts of female adults undergoing a two-stage breast reconstruction will be enrolled. The primary outcome is capsular contracture at 10-year follow-up which is graded with the modified Baker classification. It is analysed with survival analysis using a frailty model for clustered interval-censored data, with both an intention-to-treat and per-protocol approach. Secondary outcomes are other complication rates, surgical revision rate, patient satisfaction and quality of life and user-friendliness. Outcomes are measured 2 weeks, 6 months, 1, 2, 3, 5 and 10 years postoperatively. Interim analysis is performed when 1-year, 3-year and 5-year follow-up is completed.Ethics and disseminationThe trial has been reviewed and approved by the Medical Research Ethics Committee of the Erasmus MC, University Medical Centre Rotterdam (MEC-2018-126) and locally by each participating centre. Written informed consent will be obtained from each study participant. The results will be disseminated by publication in peer-reviewed journals.Trial registrationNTR7265.


Sign in / Sign up

Export Citation Format

Share Document