scholarly journals Protection of Aluminum Foils against Environmental Corrosion with Graphene-Based Coatings

2021 ◽  
Vol 8 ◽  
pp. 18-28
Author(s):  
George Paterakis ◽  
George Anagnostopoulos ◽  
Labrini Sygellou ◽  
Costas Galiotis ◽  
◽  
...  

Commercial aluminum foils were coated by graphene oxide, and its functionalized derivatives and the corrosion performance of the coated specimens were examined in acidic conditions (lithium perchlorate and sulfuric acid). Electrochemical experiments have shown that all graphene oxide-coated specimens provided up to 96% corrosion inhibition efficiency with a corresponding lower corrosion rate compared to the bare aluminum foil. Our results clearly show that graphene-related materials offer viable alternatives for the protection of aluminum, and this opens up a number of possibilities for its use in a number of commercial applications.

2019 ◽  
Vol 27 (03) ◽  
pp. 1950115 ◽  
Author(s):  
H. EL AADAD ◽  
M. GALAI ◽  
A. CHAHINE ◽  
M. EBN TOUHAMI

This work aims at synthesis and characterization of 2,2[Formula: see text]-dibenzimidazolyl butane as an effective corrosion inhibitor of mild steel in sulfuric acid solution. A simple and efficient method for its synthesis in described. The chemical structure and surface morphology of 2,2[Formula: see text]-dibenzimidazolyl butane were characterized by mass spectrometry (MS), Fourier transform infrared (FTIR), Raman, 1H, [Formula: see text]C NMR spectroscopy and transmission electron microscopy (TEM). Its thermal decomposition and its variation in mass was studied by thermogravimetric analysis (TGA) coupled with differential thermal analysis (DTA). The molecular mass of 2,2[Formula: see text]-dibenzimidazolyl butane was determined to be at 290[Formula: see text]g/mol and its degradation was achieved at 455∘C. Then, the corrosion inhibition efficiency of 2,2[Formula: see text]-dibenzimidazolyl butane was studied with various concentrations in 0.5 M H2SO4 solution for mild steel by the potentiodynamic polarization and the electrochemical measurements. According to the results of electrochemical impedance spectroscopy, the inhibition efficiency decreased with concentration and reached its maximum (95.5%) at 100[Formula: see text]ppm. The polarization measurements showed that the prepared inhibitor acts as a cathodic type inhibitor. The mass loss tests are in accordance with the results of electrochemical measurements.


2019 ◽  
Author(s):  
Chem Int

The corrosion inhibition characteristics of two medicinal molecules phenylalanine and rutin on mild steel in 1.0M Hydrochloric acid were evaluated using gravimetric method. Corrosion inhibition efficiency of 83.78 and 90.40 % was obtained respectively after seven days. However, phenylalanine showed weak accumulative higher corrosion inhibition efficiency. The presence of both molecules in the corrosive environment reduced the corrosion rate constant and increased the material half-life. Thermodynamic data calculated suggests a spontaneous adsorption of the molecules on the mild steel’s surface.


2019 ◽  
Author(s):  
Chem Int

The anti-corrosive properties of sulphadoxine + pyrimethamine (S+P) on the corrosion of pipeline steel in acidic environment were investigated using electrochemical techniques. The results obtained showed an excellent inhibition efficiency which increased with increase in inhibitor concentration. The corrosion inhibition efficiency increased up to 99.04 % at 0.01M S+P and decreased with rise in temperature down to 85.93 % at 333 K and 0.01 M S+P, suggesting a physiosorptive mechanism of adsorption. Also the adsorption data was fitted into Langmuir and Temkin adsorption isotherms, while the inhibitive action was shown to proceed by mixed inhibition mode.


2021 ◽  
Vol 12 (1) ◽  
pp. 8-15
Author(s):  
Ainaz Mihanfar ◽  
Niloufar Targhazeh ◽  
Shirin Sadighparvar ◽  
Saber Ghazizadeh Darband ◽  
Maryam Majidinia ◽  
...  

Abstract Doxorubicin (DOX) is an effective chemotherapeutic agent used for the treatment of various types of cancer. However, its poor solubility, undesirable side effects, and short half-life have remained a challenge. We used a formulation based on graphene oxide as an anticancer drug delivery system for DOX in MCF-7 breast cancer cells, to address these issues. In vitro release studies confirmed that the synthesized formulation has an improved release profile in acidic conditions (similar to the tumor microenvironment). Further in vitro studies, including MTT, uptake, and apoptosis assays were performed. The toxic effects of the nanocarrier on the kidney, heart and liver of healthy rats were also evaluated. We observed that the DOX-loaded carrier improved the cytotoxic effect of DOX on the breast cell line compared to free DOX. In summary, our results introduce the DOX-loaded carrier as a potential platform for in vitro targeting of cancer cells and suggest further studies are necessary to investigate its in vivo anti-cancer potential.


2015 ◽  
Vol 351 ◽  
pp. 986-996 ◽  
Author(s):  
Zongxue Yu ◽  
Haihui Di ◽  
Yu Ma ◽  
Liang Lv ◽  
Yang Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document